মুখ্য সমললৈ এৰি যাওক
b-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-4 ab=4
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) ব্যৱহাৰ কৰি b^{2}-4b+4ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-4 -2,-2
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-4=-5 -2-2=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(b-2\right)\left(b-2\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(b+a\right)\left(b+b\right) পুনৰ লিখক।
\left(b-2\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
b=2
সমীকৰণ উলিয়াবলৈ, b-2=0 সমাধান কৰক।
a+b=-4 ab=1\times 4=4
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে b^{2}+ab+bb+4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-4 -2,-2
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-4=-5 -2-2=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(b^{2}-2b\right)+\left(-2b+4\right)
b^{2}-4b+4ক \left(b^{2}-2b\right)+\left(-2b+4\right) হিচাপে পুনৰ লিখক।
b\left(b-2\right)-2\left(b-2\right)
প্ৰথম গোটত b আৰু দ্বিতীয় গোটত -2ৰ গুণনীয়ক উলিয়াওক।
\left(b-2\right)\left(b-2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম b-2ৰ গুণনীয়ক উলিয়াওক।
\left(b-2\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
b=2
সমীকৰণ উলিয়াবলৈ, b-2=0 সমাধান কৰক।
b^{2}-4b+4=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
b=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -4, c-ৰ বাবে 4 চাবষ্টিটিউট৷
b=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
বৰ্গ -4৷
b=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
-4 বাৰ 4 পুৰণ কৰক৷
b=\frac{-\left(-4\right)±\sqrt{0}}{2}
-16 লৈ 16 যোগ কৰক৷
b=-\frac{-4}{2}
0-ৰ বৰ্গমূল লওক৷
b=\frac{4}{2}
-4ৰ বিপৰীত হৈছে 4৷
b=2
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
b^{2}-4b+4=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\left(b-2\right)^{2}=0
উৎপাদক b^{2}-4b+4 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(b-2\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
b-2=0 b-2=0
সৰলীকৰণ৷
b=2 b=2
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
b=2
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷