মুখ্য সমললৈ এৰি যাওক
a-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\left(a-1\right)\left(a+1\right)=0
a^{2}-1 বিবেচনা কৰক। a^{2}-1ক a^{2}-1^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
a=1 a=-1
সমীকৰণ উলিয়াবলৈ, a-1=0 আৰু a+1=0 সমাধান কৰক।
a^{2}=1
উভয় কাষে 1 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
a=1 a=-1
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
a^{2}-1=0
কুৱাড্ৰেটিক সমীকৰণ হৈছে ইয়াৰ দৰে, এটা x^{2} পদৰ সৈতে, কিন্তু কোনো x নাই, ইয়াক কুৱাড্ৰেয়িক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, এবাৰ সেইবিলাকক মান্য ৰূপ : ax^{2}+bx+c=0-ত প্ৰদান কৰি৷
a=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 0, c-ৰ বাবে -1 চাবষ্টিটিউট৷
a=\frac{0±\sqrt{-4\left(-1\right)}}{2}
বৰ্গ 0৷
a=\frac{0±\sqrt{4}}{2}
-4 বাৰ -1 পুৰণ কৰক৷
a=\frac{0±2}{2}
4-ৰ বৰ্গমূল লওক৷
a=1
এতিয়া ± যোগ হ’লে সমীকৰণ a=\frac{0±2}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা 2 হৰণ কৰক৷
a=-1
এতিয়া ± বিয়োগ হ’লে সমীকৰণ a=\frac{0±2}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা -2 হৰণ কৰক৷
a=1 a=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷