a-ৰ বাবে সমাধান কৰক
a=7
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a^{2}+a^{3}-392=0
দুয়োটা দিশৰ পৰা 392 বিয়োগ কৰক৷
a^{3}+a^{2}-392=0
এটা মান্য ৰূপত ৰাখি সমীকৰণ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত পদসমূহ ৰাখক৷
±392,±196,±98,±56,±49,±28,±14,±8,±7,±4,±2,±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি -392ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
a=7
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
a^{2}+8a+56=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, a-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। a^{2}+8a+56 লাভ কৰিবলৈ a-7ৰ দ্বাৰা a^{3}+a^{2}-392 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
a=\frac{-8±\sqrt{8^{2}-4\times 1\times 56}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে 8, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 56।
a=\frac{-8±\sqrt{-160}}{2}
গণনা কৰক৷
a\in \emptyset
যিহেতু ঋণাত্মক সংখ্যাৰ বৰ্গমূলটো প্ৰকৃত ক্ষেত্ৰত নিৰ্ধাৰিত কৰা হোৱা নাই, গতিকে তাৰ কোনো সমাধান নাই৷
a=7
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}