a-ৰ বাবে সমাধান কৰক
a=-15
a=15
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a^{2}+400=25^{2}
2ৰ পাৱাৰ 20ক গণনা কৰক আৰু 400 লাভ কৰক৷
a^{2}+400=625
2ৰ পাৱাৰ 25ক গণনা কৰক আৰু 625 লাভ কৰক৷
a^{2}+400-625=0
দুয়োটা দিশৰ পৰা 625 বিয়োগ কৰক৷
a^{2}-225=0
-225 লাভ কৰিবলৈ 400-ৰ পৰা 625 বিয়োগ কৰক৷
\left(a-15\right)\left(a+15\right)=0
a^{2}-225 বিবেচনা কৰক। a^{2}-225ক a^{2}-15^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
a=15 a=-15
সমীকৰণ উলিয়াবলৈ, a-15=0 আৰু a+15=0 সমাধান কৰক।
a^{2}+400=25^{2}
2ৰ পাৱাৰ 20ক গণনা কৰক আৰু 400 লাভ কৰক৷
a^{2}+400=625
2ৰ পাৱাৰ 25ক গণনা কৰক আৰু 625 লাভ কৰক৷
a^{2}=625-400
দুয়োটা দিশৰ পৰা 400 বিয়োগ কৰক৷
a^{2}=225
225 লাভ কৰিবলৈ 625-ৰ পৰা 400 বিয়োগ কৰক৷
a=15 a=-15
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
a^{2}+400=25^{2}
2ৰ পাৱাৰ 20ক গণনা কৰক আৰু 400 লাভ কৰক৷
a^{2}+400=625
2ৰ পাৱাৰ 25ক গণনা কৰক আৰু 625 লাভ কৰক৷
a^{2}+400-625=0
দুয়োটা দিশৰ পৰা 625 বিয়োগ কৰক৷
a^{2}-225=0
-225 লাভ কৰিবলৈ 400-ৰ পৰা 625 বিয়োগ কৰক৷
a=\frac{0±\sqrt{0^{2}-4\left(-225\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 0, c-ৰ বাবে -225 চাবষ্টিটিউট৷
a=\frac{0±\sqrt{-4\left(-225\right)}}{2}
বৰ্গ 0৷
a=\frac{0±\sqrt{900}}{2}
-4 বাৰ -225 পুৰণ কৰক৷
a=\frac{0±30}{2}
900-ৰ বৰ্গমূল লওক৷
a=15
এতিয়া ± যোগ হ’লে সমীকৰণ a=\frac{0±30}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা 30 হৰণ কৰক৷
a=-15
এতিয়া ± বিয়োগ হ’লে সমীকৰণ a=\frac{0±30}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা -30 হৰণ কৰক৷
a=15 a=-15
সমীকৰণটো এতিয়া সমাধান হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}