R-ৰ বাবে সমাধান কৰক
\left\{\begin{matrix}R=\frac{100p}{S\Phi T^{2}}\text{, }&T\neq 0\text{ and }S\neq 0\text{ and }\Phi \neq 0\\R\in \mathrm{R}\text{, }&p=0\text{ and }\Phi =0\text{ and }T\neq 0\text{ and }S\neq 0\end{matrix}\right.
S-ৰ বাবে সমাধান কৰক
\left\{\begin{matrix}S=\frac{100p}{R\Phi T^{2}}\text{, }&p\neq 0\text{ and }T\neq 0\text{ and }\Phi \neq 0\text{ and }R\neq 0\\S\neq 0\text{, }&\left(\Phi =0\text{ or }R=0\right)\text{ and }p=0\text{ and }T\neq 0\end{matrix}\right.
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
R\Phi ST^{2}=p\times 100
ST^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
RS\Phi T^{2}=100p
পদসমূহ ৰেকৰ্ড কৰক৷
S\Phi T^{2}R=100p
সমীকৰণটো মান্য ৰূপত আছে৷
\frac{S\Phi T^{2}R}{S\Phi T^{2}}=\frac{100p}{S\Phi T^{2}}
S\Phi T^{2}-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
R=\frac{100p}{S\Phi T^{2}}
S\Phi T^{2}-ৰ দ্বাৰা হৰণ কৰিলে S\Phi T^{2}-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
R\Phi ST^{2}=p\times 100
চলক S, 0ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ ST^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
RS\Phi T^{2}=100p
পদসমূহ ৰেকৰ্ড কৰক৷
R\Phi T^{2}S=100p
সমীকৰণটো মান্য ৰূপত আছে৷
\frac{R\Phi T^{2}S}{R\Phi T^{2}}=\frac{100p}{R\Phi T^{2}}
R\Phi T^{2}-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
S=\frac{100p}{R\Phi T^{2}}
R\Phi T^{2}-ৰ দ্বাৰা হৰণ কৰিলে R\Phi T^{2}-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
S=\frac{100p}{R\Phi T^{2}}\text{, }S\neq 0
চলক S, 0ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}