মূল্যায়ন
\frac{x\left(x^{2}-36x+429\right)}{3}
ডিফাৰেনচিয়েট w.r.t. x
\left(x-13\right)\left(x-11\right)
কুইজ
Integration
ইয়াৰ সৈতে একে 5 টা সমস্যা:
I ( x ) = \int _ { 0 } ^ { x } ( t ^ { 2 } - 24 t + 143 ) d t
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\int t^{2}-24t+143\mathrm{d}t
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int t^{2}\mathrm{d}t+\int -24t\mathrm{d}t+\int 143\mathrm{d}t
এটা এটা কৰি মুঠ যোগ কৰক।
\int t^{2}\mathrm{d}t-24\int t\mathrm{d}t+\int 143\mathrm{d}t
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{t^{3}}{3}-24\int t\mathrm{d}t+\int 143\mathrm{d}t
k\neq -1-ৰ বাবে \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}-ৰ পৰা, \frac{t^{3}}{3}-ৰ লগত \int t^{2}\mathrm{d}t-ৰ সলনি।
\frac{t^{3}}{3}-12t^{2}+\int 143\mathrm{d}t
k\neq -1-ৰ বাবে \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}-ৰ পৰা, \frac{t^{2}}{2}-ৰ লগত \int t\mathrm{d}t-ৰ সলনি। -24 বাৰ \frac{t^{2}}{2} পুৰণ কৰক৷
\frac{t^{3}}{3}-12t^{2}+143t
অখণ্ড সংখ্যাবোৰৰ সাধাৰণ তালিকাৰ \int a\mathrm{d}t=at নীতি অনুসাৰি 143-ৰ অনুকলন বিচাৰি পাওক।
\frac{x^{3}}{3}-12x^{2}+143x-\left(\frac{0^{3}}{3}-12\times 0^{2}+143\times 0\right)
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{x\left(x^{2}-36x+429\right)}{3}
সৰলীকৰণ৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}