মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x\left(9x-3\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=\frac{1}{3}
সমীকৰণ উলিয়াবলৈ, x=0 আৰু 9x-3=0 সমাধান কৰক।
9x^{2}-3x=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 9}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 9, b-ৰ বাবে -3, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-\left(-3\right)±3}{2\times 9}
\left(-3\right)^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{3±3}{2\times 9}
-3ৰ বিপৰীত হৈছে 3৷
x=\frac{3±3}{18}
2 বাৰ 9 পুৰণ কৰক৷
x=\frac{6}{18}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{3±3}{18} সমাধান কৰক৷ 3 লৈ 3 যোগ কৰক৷
x=\frac{1}{3}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{6}{18} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{0}{18}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{3±3}{18} সমাধান কৰক৷ 3-ৰ পৰা 3 বিয়োগ কৰক৷
x=0
18-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=\frac{1}{3} x=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
9x^{2}-3x=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{9x^{2}-3x}{9}=\frac{0}{9}
9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{3}{9}\right)x=\frac{0}{9}
9-ৰ দ্বাৰা হৰণ কৰিলে 9-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{1}{3}x=\frac{0}{9}
3 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-3}{9} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{1}{3}x=0
9-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} হৰণ কৰক, -\frac{1}{6} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{6}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{6} বৰ্গ কৰক৷
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
উৎপাদক x^{2}-\frac{1}{3}x+\frac{1}{36} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
সৰলীকৰণ৷
x=\frac{1}{3} x=0
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{6} যোগ কৰক৷