কাৰক
3\left(x-1\right)\left(3x-2\right)
মূল্যায়ন
3\left(x-1\right)\left(3x-2\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3\left(3x^{2}-5x+2\right)
3ৰ গুণনীয়ক উলিয়াওক।
a+b=-5 ab=3\times 2=6
3x^{2}-5x+2 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 3x^{2}+ax+bx+2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-6 -2,-3
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-6=-7 -2-3=-5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-3 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(3x^{2}-3x\right)+\left(-2x+2\right)
3x^{2}-5x+2ক \left(3x^{2}-3x\right)+\left(-2x+2\right) হিচাপে পুনৰ লিখক।
3x\left(x-1\right)-2\left(x-1\right)
প্ৰথম গোটত 3x আৰু দ্বিতীয় গোটত -2ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(3x-2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
3\left(x-1\right)\left(3x-2\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
9x^{2}-15x+6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\times 6}}{2\times 9}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\times 6}}{2\times 9}
বৰ্গ -15৷
x=\frac{-\left(-15\right)±\sqrt{225-36\times 6}}{2\times 9}
-4 বাৰ 9 পুৰণ কৰক৷
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 9}
-36 বাৰ 6 পুৰণ কৰক৷
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 9}
-216 লৈ 225 যোগ কৰক৷
x=\frac{-\left(-15\right)±3}{2\times 9}
9-ৰ বৰ্গমূল লওক৷
x=\frac{15±3}{2\times 9}
-15ৰ বিপৰীত হৈছে 15৷
x=\frac{15±3}{18}
2 বাৰ 9 পুৰণ কৰক৷
x=\frac{18}{18}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{15±3}{18} সমাধান কৰক৷ 3 লৈ 15 যোগ কৰক৷
x=1
18-ৰ দ্বাৰা 18 হৰণ কৰক৷
x=\frac{12}{18}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{15±3}{18} সমাধান কৰক৷ 15-ৰ পৰা 3 বিয়োগ কৰক৷
x=\frac{2}{3}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{12}{18} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
9x^{2}-15x+6=9\left(x-1\right)\left(x-\frac{2}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে \frac{2}{3} বিকল্প৷
9x^{2}-15x+6=9\left(x-1\right)\times \frac{3x-2}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি x-ৰ পৰা \frac{2}{3} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
9x^{2}-15x+6=3\left(x-1\right)\left(3x-2\right)
9 আৰু 3-ত সৰ্বাধিক পৰিচিত কাৰক 3 বাতিল কৰাটো বাদ দিয়ক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}