x-ৰ বাবে সমাধান কৰক
x = \frac{5 \sqrt{7} + 7}{9} \approx 2.247639617
x=\frac{7-5\sqrt{7}}{9}\approx -0.692084062
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
9x^{2}-14x-14=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 9\left(-14\right)}}{2\times 9}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 9, b-ৰ বাবে -14, c-ৰ বাবে -14 চাবষ্টিটিউট৷
x=\frac{-\left(-14\right)±\sqrt{196-4\times 9\left(-14\right)}}{2\times 9}
বৰ্গ -14৷
x=\frac{-\left(-14\right)±\sqrt{196-36\left(-14\right)}}{2\times 9}
-4 বাৰ 9 পুৰণ কৰক৷
x=\frac{-\left(-14\right)±\sqrt{196+504}}{2\times 9}
-36 বাৰ -14 পুৰণ কৰক৷
x=\frac{-\left(-14\right)±\sqrt{700}}{2\times 9}
504 লৈ 196 যোগ কৰক৷
x=\frac{-\left(-14\right)±10\sqrt{7}}{2\times 9}
700-ৰ বৰ্গমূল লওক৷
x=\frac{14±10\sqrt{7}}{2\times 9}
-14ৰ বিপৰীত হৈছে 14৷
x=\frac{14±10\sqrt{7}}{18}
2 বাৰ 9 পুৰণ কৰক৷
x=\frac{10\sqrt{7}+14}{18}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{14±10\sqrt{7}}{18} সমাধান কৰক৷ 10\sqrt{7} লৈ 14 যোগ কৰক৷
x=\frac{5\sqrt{7}+7}{9}
18-ৰ দ্বাৰা 14+10\sqrt{7} হৰণ কৰক৷
x=\frac{14-10\sqrt{7}}{18}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{14±10\sqrt{7}}{18} সমাধান কৰক৷ 14-ৰ পৰা 10\sqrt{7} বিয়োগ কৰক৷
x=\frac{7-5\sqrt{7}}{9}
18-ৰ দ্বাৰা 14-10\sqrt{7} হৰণ কৰক৷
x=\frac{5\sqrt{7}+7}{9} x=\frac{7-5\sqrt{7}}{9}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
9x^{2}-14x-14=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
9x^{2}-14x-14-\left(-14\right)=-\left(-14\right)
সমীকৰণৰ দুয়োটা দিশতে 14 যোগ কৰক৷
9x^{2}-14x=-\left(-14\right)
ইয়াৰ নিজৰ পৰা -14 বিয়োগ কৰিলে 0 থাকে৷
9x^{2}-14x=14
0-ৰ পৰা -14 বিয়োগ কৰক৷
\frac{9x^{2}-14x}{9}=\frac{14}{9}
9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{14}{9}x=\frac{14}{9}
9-ৰ দ্বাৰা হৰণ কৰিলে 9-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{14}{9}x+\left(-\frac{7}{9}\right)^{2}=\frac{14}{9}+\left(-\frac{7}{9}\right)^{2}
-\frac{14}{9} হৰণ কৰক, -\frac{7}{9} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{9}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{14}{9}x+\frac{49}{81}=\frac{14}{9}+\frac{49}{81}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{9} বৰ্গ কৰক৷
x^{2}-\frac{14}{9}x+\frac{49}{81}=\frac{175}{81}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{49}{81} লৈ \frac{14}{9} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{7}{9}\right)^{2}=\frac{175}{81}
উৎপাদক x^{2}-\frac{14}{9}x+\frac{49}{81} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{9}\right)^{2}}=\sqrt{\frac{175}{81}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{9}=\frac{5\sqrt{7}}{9} x-\frac{7}{9}=-\frac{5\sqrt{7}}{9}
সৰলীকৰণ৷
x=\frac{5\sqrt{7}+7}{9} x=\frac{7-5\sqrt{7}}{9}
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{9} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}