কাৰক
\left(3c+8\right)^{2}
মূল্যায়ন
\left(3c+8\right)^{2}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=48 ab=9\times 64=576
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 9c^{2}+ac+bc+64 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,576 2,288 3,192 4,144 6,96 8,72 9,64 12,48 16,36 18,32 24,24
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 576 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+576=577 2+288=290 3+192=195 4+144=148 6+96=102 8+72=80 9+64=73 12+48=60 16+36=52 18+32=50 24+24=48
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=24 b=24
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 48।
\left(9c^{2}+24c\right)+\left(24c+64\right)
9c^{2}+48c+64ক \left(9c^{2}+24c\right)+\left(24c+64\right) হিচাপে পুনৰ লিখক।
3c\left(3c+8\right)+8\left(3c+8\right)
প্ৰথম গোটত 3c আৰু দ্বিতীয় গোটত 8ৰ গুণনীয়ক উলিয়াওক।
\left(3c+8\right)\left(3c+8\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 3c+8ৰ গুণনীয়ক উলিয়াওক।
\left(3c+8\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(9c^{2}+48c+64)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
gcf(9,48,64)=1
গুণাংকৰ পৰা সৰ্বশ্ৰেষ্ঠ সাধাৰণ গুণনীয়কটো বিচাৰক।
\sqrt{9c^{2}}=3c
অগ্ৰণী পদ 9c^{2}ৰ বৰ্গমূল বিচাৰক৷
\sqrt{64}=8
অনুগামী পদ 64ৰ বৰ্গমূল বিচাৰক৷
\left(3c+8\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
9c^{2}+48c+64=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
c=\frac{-48±\sqrt{48^{2}-4\times 9\times 64}}{2\times 9}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
c=\frac{-48±\sqrt{2304-4\times 9\times 64}}{2\times 9}
বৰ্গ 48৷
c=\frac{-48±\sqrt{2304-36\times 64}}{2\times 9}
-4 বাৰ 9 পুৰণ কৰক৷
c=\frac{-48±\sqrt{2304-2304}}{2\times 9}
-36 বাৰ 64 পুৰণ কৰক৷
c=\frac{-48±\sqrt{0}}{2\times 9}
-2304 লৈ 2304 যোগ কৰক৷
c=\frac{-48±0}{2\times 9}
0-ৰ বৰ্গমূল লওক৷
c=\frac{-48±0}{18}
2 বাৰ 9 পুৰণ কৰক৷
9c^{2}+48c+64=9\left(c-\left(-\frac{8}{3}\right)\right)\left(c-\left(-\frac{8}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -\frac{8}{3} আৰু x_{2}ৰ বাবে -\frac{8}{3} বিকল্প৷
9c^{2}+48c+64=9\left(c+\frac{8}{3}\right)\left(c+\frac{8}{3}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
9c^{2}+48c+64=9\times \frac{3c+8}{3}\left(c+\frac{8}{3}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি c লৈ \frac{8}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
9c^{2}+48c+64=9\times \frac{3c+8}{3}\times \frac{3c+8}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি c লৈ \frac{8}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
9c^{2}+48c+64=9\times \frac{\left(3c+8\right)\left(3c+8\right)}{3\times 3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3c+8}{3} বাৰ \frac{3c+8}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
9c^{2}+48c+64=9\times \frac{\left(3c+8\right)\left(3c+8\right)}{9}
3 বাৰ 3 পুৰণ কৰক৷
9c^{2}+48c+64=\left(3c+8\right)\left(3c+8\right)
9 আৰু 9-ত সৰ্বাধিক পৰিচিত কাৰক 9 বাতিল কৰাটো বাদ দিয়ক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}