মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-12 ab=9\times 4=36
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 9x^{2}+ax+bx+4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 36 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-6 b=-6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -12।
\left(9x^{2}-6x\right)+\left(-6x+4\right)
9x^{2}-12x+4ক \left(9x^{2}-6x\right)+\left(-6x+4\right) হিচাপে পুনৰ লিখক।
3x\left(3x-2\right)-2\left(3x-2\right)
প্ৰথম গোটত 3x আৰু দ্বিতীয় গোটত -2ৰ গুণনীয়ক উলিয়াওক।
\left(3x-2\right)\left(3x-2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 3x-2ৰ গুণনীয়ক উলিয়াওক।
\left(3x-2\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=\frac{2}{3}
সমীকৰণ উলিয়াবলৈ, 3x-2=0 সমাধান কৰক।
9x^{2}-12x+4=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 9, b-ৰ বাবে -12, c-ৰ বাবে 4 চাবষ্টিটিউট৷
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
বৰ্গ -12৷
x=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
-4 বাৰ 9 পুৰণ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
-36 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
-144 লৈ 144 যোগ কৰক৷
x=-\frac{-12}{2\times 9}
0-ৰ বৰ্গমূল লওক৷
x=\frac{12}{2\times 9}
-12ৰ বিপৰীত হৈছে 12৷
x=\frac{12}{18}
2 বাৰ 9 পুৰণ কৰক৷
x=\frac{2}{3}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{12}{18} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
9x^{2}-12x+4=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
9x^{2}-12x+4-4=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
9x^{2}-12x=-4
ইয়াৰ নিজৰ পৰা 4 বিয়োগ কৰিলে 0 থাকে৷
\frac{9x^{2}-12x}{9}=-\frac{4}{9}
9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{12}{9}\right)x=-\frac{4}{9}
9-ৰ দ্বাৰা হৰণ কৰিলে 9-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{4}{3}x=-\frac{4}{9}
3 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-12}{9} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} হৰণ কৰক, -\frac{2}{3} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{2}{3}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{-4+4}{9}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{2}{3} বৰ্গ কৰক৷
x^{2}-\frac{4}{3}x+\frac{4}{9}=0
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{4}{9} লৈ -\frac{4}{9} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{2}{3}\right)^{2}=0
উৎপাদক x^{2}-\frac{4}{3}x+\frac{4}{9} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{2}{3}=0 x-\frac{2}{3}=0
সৰলীকৰণ৷
x=\frac{2}{3} x=\frac{2}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{2}{3} যোগ কৰক৷
x=\frac{2}{3}
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷