x-ৰ বাবে সমাধান কৰক
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=-2 ab=8\left(-15\right)=-120
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 8x^{2}+ax+bx-15 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -120 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-12 b=10
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -2।
\left(8x^{2}-12x\right)+\left(10x-15\right)
8x^{2}-2x-15ক \left(8x^{2}-12x\right)+\left(10x-15\right) হিচাপে পুনৰ লিখক।
4x\left(2x-3\right)+5\left(2x-3\right)
প্ৰথম গোটত 4x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(2x-3\right)\left(4x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2x-3ৰ গুণনীয়ক উলিয়াওক।
x=\frac{3}{2} x=-\frac{5}{4}
সমীকৰণ উলিয়াবলৈ, 2x-3=0 আৰু 4x+5=0 সমাধান কৰক।
8x^{2}-2x-15=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 8, b-ৰ বাবে -2, c-ৰ বাবে -15 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±\sqrt{4-4\times 8\left(-15\right)}}{2\times 8}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4-32\left(-15\right)}}{2\times 8}
-4 বাৰ 8 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{4+480}}{2\times 8}
-32 বাৰ -15 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{484}}{2\times 8}
480 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±22}{2\times 8}
484-ৰ বৰ্গমূল লওক৷
x=\frac{2±22}{2\times 8}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{2±22}{16}
2 বাৰ 8 পুৰণ কৰক৷
x=\frac{24}{16}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±22}{16} সমাধান কৰক৷ 22 লৈ 2 যোগ কৰক৷
x=\frac{3}{2}
8 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{24}{16} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{20}{16}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±22}{16} সমাধান কৰক৷ 2-ৰ পৰা 22 বিয়োগ কৰক৷
x=-\frac{5}{4}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-20}{16} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{3}{2} x=-\frac{5}{4}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
8x^{2}-2x-15=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
8x^{2}-2x-15-\left(-15\right)=-\left(-15\right)
সমীকৰণৰ দুয়োটা দিশতে 15 যোগ কৰক৷
8x^{2}-2x=-\left(-15\right)
ইয়াৰ নিজৰ পৰা -15 বিয়োগ কৰিলে 0 থাকে৷
8x^{2}-2x=15
0-ৰ পৰা -15 বিয়োগ কৰক৷
\frac{8x^{2}-2x}{8}=\frac{15}{8}
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{2}{8}\right)x=\frac{15}{8}
8-ৰ দ্বাৰা হৰণ কৰিলে 8-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{1}{4}x=\frac{15}{8}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-2}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{1}{8}\right)^{2}
-\frac{1}{4} হৰণ কৰক, -\frac{1}{8} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{8}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{15}{8}+\frac{1}{64}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{8} বৰ্গ কৰক৷
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{121}{64}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{64} লৈ \frac{15}{8} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{8}\right)^{2}=\frac{121}{64}
উৎপাদক x^{2}-\frac{1}{4}x+\frac{1}{64} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{8}=\frac{11}{8} x-\frac{1}{8}=-\frac{11}{8}
সৰলীকৰণ৷
x=\frac{3}{2} x=-\frac{5}{4}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{8} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}