কাৰক
7\left(s-1\right)\left(s+1\right)\left(s^{2}+1\right)\left(s^{4}+1\right)
মূল্যায়ন
7\left(s^{8}-1\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
7\left(s^{8}-1\right)
7ৰ গুণনীয়ক উলিয়াওক।
\left(s^{4}-1\right)\left(s^{4}+1\right)
s^{8}-1 বিবেচনা কৰক। s^{8}-1ক \left(s^{4}\right)^{2}-1^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
\left(s^{2}-1\right)\left(s^{2}+1\right)
s^{4}-1 বিবেচনা কৰক। s^{4}-1ক \left(s^{2}\right)^{2}-1^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
\left(s-1\right)\left(s+1\right)
s^{2}-1 বিবেচনা কৰক। s^{2}-1ক s^{2}-1^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
7\left(s-1\right)\left(s+1\right)\left(s^{2}+1\right)\left(s^{4}+1\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক। তলৰ বহুপদসমূহৰ উৎপাদক উলিওৱা হোৱা নাই যিহেতু সেইবোৰৰ কোনো ৰেশ্যনেল বৰ্গমূল নাই: s^{2}+1,s^{4}+1।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}