মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-2x+1=0
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=-2 ab=1\times 1=1
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+1 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-1 b=-1
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-x\right)+\left(-x+1\right)
x^{2}-2x+1ক \left(x^{2}-x\right)+\left(-x+1\right) হিচাপে পুনৰ লিখক।
x\left(x-1\right)-\left(x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=1
সমীকৰণ উলিয়াবলৈ, x-1=0 সমাধান কৰক।
7x^{2}-14x+7=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\times 7}}{2\times 7}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 7, b-ৰ বাবে -14, c-ৰ বাবে 7 চাবষ্টিটিউট৷
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7\times 7}}{2\times 7}
বৰ্গ -14৷
x=\frac{-\left(-14\right)±\sqrt{196-28\times 7}}{2\times 7}
-4 বাৰ 7 পুৰণ কৰক৷
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2\times 7}
-28 বাৰ 7 পুৰণ কৰক৷
x=\frac{-\left(-14\right)±\sqrt{0}}{2\times 7}
-196 লৈ 196 যোগ কৰক৷
x=-\frac{-14}{2\times 7}
0-ৰ বৰ্গমূল লওক৷
x=\frac{14}{2\times 7}
-14ৰ বিপৰীত হৈছে 14৷
x=\frac{14}{14}
2 বাৰ 7 পুৰণ কৰক৷
x=1
14-ৰ দ্বাৰা 14 হৰণ কৰক৷
7x^{2}-14x+7=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
7x^{2}-14x+7-7=-7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7 বিয়োগ কৰক৷
7x^{2}-14x=-7
ইয়াৰ নিজৰ পৰা 7 বিয়োগ কৰিলে 0 থাকে৷
\frac{7x^{2}-14x}{7}=-\frac{7}{7}
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{14}{7}\right)x=-\frac{7}{7}
7-ৰ দ্বাৰা হৰণ কৰিলে 7-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-2x=-\frac{7}{7}
7-ৰ দ্বাৰা -14 হৰণ কৰক৷
x^{2}-2x=-1
7-ৰ দ্বাৰা -7 হৰণ কৰক৷
x^{2}-2x+1=-1+1
-2 হৰণ কৰক, -1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-2x+1=0
1 লৈ -1 যোগ কৰক৷
\left(x-1\right)^{2}=0
উৎপাদক x^{2}-2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-1=0 x-1=0
সৰলীকৰণ৷
x=1 x=1
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷