x-ৰ বাবে সমাধান কৰক
x=\frac{1}{3}\approx 0.333333333
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
6x-1-9x^{2}=0
দুয়োটা দিশৰ পৰা 9x^{2} বিয়োগ কৰক৷
-9x^{2}+6x-1=0
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=6 ab=-9\left(-1\right)=9
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -9x^{2}+ax+bx-1 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,9 3,3
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 9 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+9=10 3+3=6
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=3 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 6।
\left(-9x^{2}+3x\right)+\left(3x-1\right)
-9x^{2}+6x-1ক \left(-9x^{2}+3x\right)+\left(3x-1\right) হিচাপে পুনৰ লিখক।
-3x\left(3x-1\right)+3x-1
-9x^{2}+3xত -3xৰ গুণনীয়ক উলিয়াওক।
\left(3x-1\right)\left(-3x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 3x-1ৰ গুণনীয়ক উলিয়াওক।
x=\frac{1}{3} x=\frac{1}{3}
সমীকৰণ উলিয়াবলৈ, 3x-1=0 আৰু -3x+1=0 সমাধান কৰক।
6x-1-9x^{2}=0
দুয়োটা দিশৰ পৰা 9x^{2} বিয়োগ কৰক৷
-9x^{2}+6x-1=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-6±\sqrt{6^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -9, b-ৰ বাবে 6, c-ৰ বাবে -1 চাবষ্টিটিউট৷
x=\frac{-6±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
বৰ্গ 6৷
x=\frac{-6±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-4 বাৰ -9 পুৰণ কৰক৷
x=\frac{-6±\sqrt{36-36}}{2\left(-9\right)}
36 বাৰ -1 পুৰণ কৰক৷
x=\frac{-6±\sqrt{0}}{2\left(-9\right)}
-36 লৈ 36 যোগ কৰক৷
x=-\frac{6}{2\left(-9\right)}
0-ৰ বৰ্গমূল লওক৷
x=-\frac{6}{-18}
2 বাৰ -9 পুৰণ কৰক৷
x=\frac{1}{3}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-6}{-18} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
6x-1-9x^{2}=0
দুয়োটা দিশৰ পৰা 9x^{2} বিয়োগ কৰক৷
6x-9x^{2}=1
উভয় কাষে 1 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-9x^{2}+6x=1
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-9x^{2}+6x}{-9}=\frac{1}{-9}
-9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{6}{-9}x=\frac{1}{-9}
-9-ৰ দ্বাৰা হৰণ কৰিলে -9-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{2}{3}x=\frac{1}{-9}
3 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{6}{-9} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{2}{3}x=-\frac{1}{9}
-9-ৰ দ্বাৰা 1 হৰণ কৰক৷
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} হৰণ কৰক, -\frac{1}{3} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{3}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{3} বৰ্গ কৰক৷
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{9} লৈ -\frac{1}{9} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{3}\right)^{2}=0
উৎপাদক x^{2}-\frac{2}{3}x+\frac{1}{9} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{3}=0 x-\frac{1}{3}=0
সৰলীকৰণ৷
x=\frac{1}{3} x=\frac{1}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{3} যোগ কৰক৷
x=\frac{1}{3}
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}