মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=48 ab=64\times 9=576
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 64v^{2}+av+bv+9 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,576 2,288 3,192 4,144 6,96 8,72 9,64 12,48 16,36 18,32 24,24
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 576 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+576=577 2+288=290 3+192=195 4+144=148 6+96=102 8+72=80 9+64=73 12+48=60 16+36=52 18+32=50 24+24=48
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=24 b=24
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 48।
\left(64v^{2}+24v\right)+\left(24v+9\right)
64v^{2}+48v+9ক \left(64v^{2}+24v\right)+\left(24v+9\right) হিচাপে পুনৰ লিখক।
8v\left(8v+3\right)+3\left(8v+3\right)
প্ৰথম গোটত 8v আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(8v+3\right)\left(8v+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 8v+3ৰ গুণনীয়ক উলিয়াওক।
\left(8v+3\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(64v^{2}+48v+9)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
gcf(64,48,9)=1
গুণাংকৰ পৰা সৰ্বশ্ৰেষ্ঠ সাধাৰণ গুণনীয়কটো বিচাৰক।
\sqrt{64v^{2}}=8v
অগ্ৰণী পদ 64v^{2}ৰ বৰ্গমূল বিচাৰক৷
\sqrt{9}=3
অনুগামী পদ 9ৰ বৰ্গমূল বিচাৰক৷
\left(8v+3\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
64v^{2}+48v+9=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
v=\frac{-48±\sqrt{48^{2}-4\times 64\times 9}}{2\times 64}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
v=\frac{-48±\sqrt{2304-4\times 64\times 9}}{2\times 64}
বৰ্গ 48৷
v=\frac{-48±\sqrt{2304-256\times 9}}{2\times 64}
-4 বাৰ 64 পুৰণ কৰক৷
v=\frac{-48±\sqrt{2304-2304}}{2\times 64}
-256 বাৰ 9 পুৰণ কৰক৷
v=\frac{-48±\sqrt{0}}{2\times 64}
-2304 লৈ 2304 যোগ কৰক৷
v=\frac{-48±0}{2\times 64}
0-ৰ বৰ্গমূল লওক৷
v=\frac{-48±0}{128}
2 বাৰ 64 পুৰণ কৰক৷
64v^{2}+48v+9=64\left(v-\left(-\frac{3}{8}\right)\right)\left(v-\left(-\frac{3}{8}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -\frac{3}{8} আৰু x_{2}ৰ বাবে -\frac{3}{8} বিকল্প৷
64v^{2}+48v+9=64\left(v+\frac{3}{8}\right)\left(v+\frac{3}{8}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
64v^{2}+48v+9=64\times \frac{8v+3}{8}\left(v+\frac{3}{8}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি v লৈ \frac{3}{8} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
64v^{2}+48v+9=64\times \frac{8v+3}{8}\times \frac{8v+3}{8}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি v লৈ \frac{3}{8} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
64v^{2}+48v+9=64\times \frac{\left(8v+3\right)\left(8v+3\right)}{8\times 8}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{8v+3}{8} বাৰ \frac{8v+3}{8} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
64v^{2}+48v+9=64\times \frac{\left(8v+3\right)\left(8v+3\right)}{64}
8 বাৰ 8 পুৰণ কৰক৷
64v^{2}+48v+9=\left(8v+3\right)\left(8v+3\right)
64 আৰু 64-ত সৰ্বাধিক পৰিচিত কাৰক 64 বাতিল কৰাটো বাদ দিয়ক৷