x-ৰ বাবে সমাধান কৰক
x=9\sqrt{10}+1\approx 29.460498942
x=1-9\sqrt{10}\approx -27.460498942
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
810=\left(x-2\times \frac{1}{2}\right)^{2}
810 লাভ কৰিবৰ বাবে 6 আৰু 135 পুৰণ কৰক৷
810=\left(x-1\right)^{2}
1 লাভ কৰিবৰ বাবে 2 আৰু \frac{1}{2} পুৰণ কৰক৷
810=x^{2}-2x+1
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1=810
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-2x+1-810=0
দুয়োটা দিশৰ পৰা 810 বিয়োগ কৰক৷
x^{2}-2x-809=0
-809 লাভ কৰিবলৈ 1-ৰ পৰা 810 বিয়োগ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-809\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -2, c-ৰ বাবে -809 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-809\right)}}{2}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4+3236}}{2}
-4 বাৰ -809 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{3240}}{2}
3236 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±18\sqrt{10}}{2}
3240-ৰ বৰ্গমূল লওক৷
x=\frac{2±18\sqrt{10}}{2}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{18\sqrt{10}+2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±18\sqrt{10}}{2} সমাধান কৰক৷ 18\sqrt{10} লৈ 2 যোগ কৰক৷
x=9\sqrt{10}+1
2-ৰ দ্বাৰা 2+18\sqrt{10} হৰণ কৰক৷
x=\frac{2-18\sqrt{10}}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±18\sqrt{10}}{2} সমাধান কৰক৷ 2-ৰ পৰা 18\sqrt{10} বিয়োগ কৰক৷
x=1-9\sqrt{10}
2-ৰ দ্বাৰা 2-18\sqrt{10} হৰণ কৰক৷
x=9\sqrt{10}+1 x=1-9\sqrt{10}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
810=\left(x-2\times \frac{1}{2}\right)^{2}
810 লাভ কৰিবৰ বাবে 6 আৰু 135 পুৰণ কৰক৷
810=\left(x-1\right)^{2}
1 লাভ কৰিবৰ বাবে 2 আৰু \frac{1}{2} পুৰণ কৰক৷
810=x^{2}-2x+1
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1=810
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
\left(x-1\right)^{2}=810
উৎপাদক x^{2}-2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{810}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-1=9\sqrt{10} x-1=-9\sqrt{10}
সৰলীকৰণ৷
x=9\sqrt{10}+1 x=1-9\sqrt{10}
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}