মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3\left(2y+3y^{2}-5\right)
3ৰ গুণনীয়ক উলিয়াওক।
3y^{2}+2y-5
2y+3y^{2}-5 বিবেচনা কৰক। এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=2 ab=3\left(-5\right)=-15
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 3y^{2}+ay+by-5 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,15 -3,5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -15 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+15=14 -3+5=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-3 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 2।
\left(3y^{2}-3y\right)+\left(5y-5\right)
3y^{2}+2y-5ক \left(3y^{2}-3y\right)+\left(5y-5\right) হিচাপে পুনৰ লিখক।
3y\left(y-1\right)+5\left(y-1\right)
প্ৰথম গোটত 3y আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(y-1\right)\left(3y+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম y-1ৰ গুণনীয়ক উলিয়াওক।
3\left(y-1\right)\left(3y+5\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
9y^{2}+6y-15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
y=\frac{-6±\sqrt{6^{2}-4\times 9\left(-15\right)}}{2\times 9}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
y=\frac{-6±\sqrt{36-4\times 9\left(-15\right)}}{2\times 9}
বৰ্গ 6৷
y=\frac{-6±\sqrt{36-36\left(-15\right)}}{2\times 9}
-4 বাৰ 9 পুৰণ কৰক৷
y=\frac{-6±\sqrt{36+540}}{2\times 9}
-36 বাৰ -15 পুৰণ কৰক৷
y=\frac{-6±\sqrt{576}}{2\times 9}
540 লৈ 36 যোগ কৰক৷
y=\frac{-6±24}{2\times 9}
576-ৰ বৰ্গমূল লওক৷
y=\frac{-6±24}{18}
2 বাৰ 9 পুৰণ কৰক৷
y=\frac{18}{18}
এতিয়া ± যোগ হ’লে সমীকৰণ y=\frac{-6±24}{18} সমাধান কৰক৷ 24 লৈ -6 যোগ কৰক৷
y=1
18-ৰ দ্বাৰা 18 হৰণ কৰক৷
y=-\frac{30}{18}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ y=\frac{-6±24}{18} সমাধান কৰক৷ -6-ৰ পৰা 24 বিয়োগ কৰক৷
y=-\frac{5}{3}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-30}{18} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
9y^{2}+6y-15=9\left(y-1\right)\left(y-\left(-\frac{5}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে -\frac{5}{3} বিকল্প৷
9y^{2}+6y-15=9\left(y-1\right)\left(y+\frac{5}{3}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
9y^{2}+6y-15=9\left(y-1\right)\times \frac{3y+5}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি y লৈ \frac{5}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
9y^{2}+6y-15=3\left(y-1\right)\left(3y+5\right)
9 আৰু 3-ত সৰ্বাধিক পৰিচিত কাৰক 3 বাতিল কৰাটো বাদ দিয়ক৷