x-ৰ বাবে সমাধান কৰক
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x^{2}-3x-20=0
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=-3 ab=2\left(-20\right)=-40
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-20 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-40 2,-20 4,-10 5,-8
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -40 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-40=-39 2-20=-18 4-10=-6 5-8=-3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(2x^{2}-8x\right)+\left(5x-20\right)
2x^{2}-3x-20ক \left(2x^{2}-8x\right)+\left(5x-20\right) হিচাপে পুনৰ লিখক।
2x\left(x-4\right)+5\left(x-4\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(2x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=-\frac{5}{2}
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু 2x+5=0 সমাধান কৰক।
6x^{2}-9x-60=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 6\left(-60\right)}}{2\times 6}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 6, b-ৰ বাবে -9, c-ৰ বাবে -60 চাবষ্টিটিউট৷
x=\frac{-\left(-9\right)±\sqrt{81-4\times 6\left(-60\right)}}{2\times 6}
বৰ্গ -9৷
x=\frac{-\left(-9\right)±\sqrt{81-24\left(-60\right)}}{2\times 6}
-4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{81+1440}}{2\times 6}
-24 বাৰ -60 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{1521}}{2\times 6}
1440 লৈ 81 যোগ কৰক৷
x=\frac{-\left(-9\right)±39}{2\times 6}
1521-ৰ বৰ্গমূল লওক৷
x=\frac{9±39}{2\times 6}
-9ৰ বিপৰীত হৈছে 9৷
x=\frac{9±39}{12}
2 বাৰ 6 পুৰণ কৰক৷
x=\frac{48}{12}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{9±39}{12} সমাধান কৰক৷ 39 লৈ 9 যোগ কৰক৷
x=4
12-ৰ দ্বাৰা 48 হৰণ কৰক৷
x=-\frac{30}{12}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{9±39}{12} সমাধান কৰক৷ 9-ৰ পৰা 39 বিয়োগ কৰক৷
x=-\frac{5}{2}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-30}{12} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=4 x=-\frac{5}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
6x^{2}-9x-60=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
6x^{2}-9x-60-\left(-60\right)=-\left(-60\right)
সমীকৰণৰ দুয়োটা দিশতে 60 যোগ কৰক৷
6x^{2}-9x=-\left(-60\right)
ইয়াৰ নিজৰ পৰা -60 বিয়োগ কৰিলে 0 থাকে৷
6x^{2}-9x=60
0-ৰ পৰা -60 বিয়োগ কৰক৷
\frac{6x^{2}-9x}{6}=\frac{60}{6}
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{9}{6}\right)x=\frac{60}{6}
6-ৰ দ্বাৰা হৰণ কৰিলে 6-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{3}{2}x=\frac{60}{6}
3 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-9}{6} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{3}{2}x=10
6-ৰ দ্বাৰা 60 হৰণ কৰক৷
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=10+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} হৰণ কৰক, -\frac{3}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{3}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{3}{2}x+\frac{9}{16}=10+\frac{9}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{3}{4} বৰ্গ কৰক৷
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{169}{16}
\frac{9}{16} লৈ 10 যোগ কৰক৷
\left(x-\frac{3}{4}\right)^{2}=\frac{169}{16}
উৎপাদক x^{2}-\frac{3}{2}x+\frac{9}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{3}{4}=\frac{13}{4} x-\frac{3}{4}=-\frac{13}{4}
সৰলীকৰণ৷
x=4 x=-\frac{5}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{3}{4} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}