x-ৰ বাবে সমাধান কৰক
x=-5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}+10x+25=0
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=10 ab=1\times 25=25
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+25 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,25 5,5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 25 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+25=26 5+5=10
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=5 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 10।
\left(x^{2}+5x\right)+\left(5x+25\right)
x^{2}+10x+25ক \left(x^{2}+5x\right)+\left(5x+25\right) হিচাপে পুনৰ লিখক।
x\left(x+5\right)+5\left(x+5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(x+5\right)\left(x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+5ৰ গুণনীয়ক উলিয়াওক।
\left(x+5\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=-5
সমীকৰণ উলিয়াবলৈ, x+5=0 সমাধান কৰক।
6x^{2}+60x+150=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-60±\sqrt{60^{2}-4\times 6\times 150}}{2\times 6}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 6, b-ৰ বাবে 60, c-ৰ বাবে 150 চাবষ্টিটিউট৷
x=\frac{-60±\sqrt{3600-4\times 6\times 150}}{2\times 6}
বৰ্গ 60৷
x=\frac{-60±\sqrt{3600-24\times 150}}{2\times 6}
-4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-60±\sqrt{3600-3600}}{2\times 6}
-24 বাৰ 150 পুৰণ কৰক৷
x=\frac{-60±\sqrt{0}}{2\times 6}
-3600 লৈ 3600 যোগ কৰক৷
x=-\frac{60}{2\times 6}
0-ৰ বৰ্গমূল লওক৷
x=-\frac{60}{12}
2 বাৰ 6 পুৰণ কৰক৷
x=-5
12-ৰ দ্বাৰা -60 হৰণ কৰক৷
6x^{2}+60x+150=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
6x^{2}+60x+150-150=-150
সমীকৰণৰ দুয়োটা দিশৰ পৰা 150 বিয়োগ কৰক৷
6x^{2}+60x=-150
ইয়াৰ নিজৰ পৰা 150 বিয়োগ কৰিলে 0 থাকে৷
\frac{6x^{2}+60x}{6}=-\frac{150}{6}
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{60}{6}x=-\frac{150}{6}
6-ৰ দ্বাৰা হৰণ কৰিলে 6-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+10x=-\frac{150}{6}
6-ৰ দ্বাৰা 60 হৰণ কৰক৷
x^{2}+10x=-25
6-ৰ দ্বাৰা -150 হৰণ কৰক৷
x^{2}+10x+5^{2}=-25+5^{2}
10 হৰণ কৰক, 5 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 5ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+10x+25=-25+25
বৰ্গ 5৷
x^{2}+10x+25=0
25 লৈ -25 যোগ কৰক৷
\left(x+5\right)^{2}=0
উৎপাদক x^{2}+10x+25 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+5=0 x+5=0
সৰলীকৰণ৷
x=-5 x=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x=-5
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}