মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=11 ab=6\left(-10\right)=-60
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 6x^{2}+ax+bx-10 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -60 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=15
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 11।
\left(6x^{2}-4x\right)+\left(15x-10\right)
6x^{2}+11x-10ক \left(6x^{2}-4x\right)+\left(15x-10\right) হিচাপে পুনৰ লিখক।
2x\left(3x-2\right)+5\left(3x-2\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(3x-2\right)\left(2x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 3x-2ৰ গুণনীয়ক উলিয়াওক।
6x^{2}+11x-10=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-10\right)}}{2\times 6}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-11±\sqrt{121-4\times 6\left(-10\right)}}{2\times 6}
বৰ্গ 11৷
x=\frac{-11±\sqrt{121-24\left(-10\right)}}{2\times 6}
-4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-11±\sqrt{121+240}}{2\times 6}
-24 বাৰ -10 পুৰণ কৰক৷
x=\frac{-11±\sqrt{361}}{2\times 6}
240 লৈ 121 যোগ কৰক৷
x=\frac{-11±19}{2\times 6}
361-ৰ বৰ্গমূল লওক৷
x=\frac{-11±19}{12}
2 বাৰ 6 পুৰণ কৰক৷
x=\frac{8}{12}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-11±19}{12} সমাধান কৰক৷ 19 লৈ -11 যোগ কৰক৷
x=\frac{2}{3}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{8}{12} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{30}{12}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-11±19}{12} সমাধান কৰক৷ -11-ৰ পৰা 19 বিয়োগ কৰক৷
x=-\frac{5}{2}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-30}{12} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
6x^{2}+11x-10=6\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{2}{3} আৰু x_{2}ৰ বাবে -\frac{5}{2} বিকল্প৷
6x^{2}+11x-10=6\left(x-\frac{2}{3}\right)\left(x+\frac{5}{2}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
6x^{2}+11x-10=6\times \frac{3x-2}{3}\left(x+\frac{5}{2}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি x-ৰ পৰা \frac{2}{3} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
6x^{2}+11x-10=6\times \frac{3x-2}{3}\times \frac{2x+5}{2}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{5}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
6x^{2}+11x-10=6\times \frac{\left(3x-2\right)\left(2x+5\right)}{3\times 2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3x-2}{3} বাৰ \frac{2x+5}{2} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
6x^{2}+11x-10=6\times \frac{\left(3x-2\right)\left(2x+5\right)}{6}
3 বাৰ 2 পুৰণ কৰক৷
6x^{2}+11x-10=\left(3x-2\right)\left(2x+5\right)
6 আৰু 6-ত সৰ্বাধিক পৰিচিত কাৰক 6 বাতিল কৰাটো বাদ দিয়ক৷