মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2\left(3x^{2}-x-2\right)
2ৰ গুণনীয়ক উলিয়াওক।
a+b=-1 ab=3\left(-2\right)=-6
3x^{2}-x-2 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 3x^{2}+ax+bx-2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-6 2,-3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-6=-5 2-3=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-3 b=2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -1।
\left(3x^{2}-3x\right)+\left(2x-2\right)
3x^{2}-x-2ক \left(3x^{2}-3x\right)+\left(2x-2\right) হিচাপে পুনৰ লিখক।
3x\left(x-1\right)+2\left(x-1\right)
প্ৰথম গোটত 3x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(3x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
2\left(x-1\right)\left(3x+2\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
6x^{2}-2x-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
-4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
-24 বাৰ -4 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
96 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±10}{2\times 6}
100-ৰ বৰ্গমূল লওক৷
x=\frac{2±10}{2\times 6}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{2±10}{12}
2 বাৰ 6 পুৰণ কৰক৷
x=\frac{12}{12}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±10}{12} সমাধান কৰক৷ 10 লৈ 2 যোগ কৰক৷
x=1
12-ৰ দ্বাৰা 12 হৰণ কৰক৷
x=-\frac{8}{12}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±10}{12} সমাধান কৰক৷ 2-ৰ পৰা 10 বিয়োগ কৰক৷
x=-\frac{2}{3}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-8}{12} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
6x^{2}-2x-4=6\left(x-1\right)\left(x-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে -\frac{2}{3} বিকল্প৷
6x^{2}-2x-4=6\left(x-1\right)\left(x+\frac{2}{3}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
6x^{2}-2x-4=6\left(x-1\right)\times \frac{3x+2}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{2}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
6x^{2}-2x-4=2\left(x-1\right)\left(3x+2\right)
6 আৰু 3-ত সৰ্বাধিক পৰিচিত কাৰক 3 বাতিল কৰাটো বাদ দিয়ক৷