কাৰক
\left(4-x\right)\left(x+13\right)
মূল্যায়ন
\left(4-x\right)\left(x+13\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-x^{2}-9x+52
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=-9 ab=-52=-52
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো -x^{2}+ax+bx+52 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-52 2,-26 4,-13
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -52 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-52=-51 2-26=-24 4-13=-9
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=4 b=-13
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -9।
\left(-x^{2}+4x\right)+\left(-13x+52\right)
-x^{2}-9x+52ক \left(-x^{2}+4x\right)+\left(-13x+52\right) হিচাপে পুনৰ লিখক।
x\left(-x+4\right)+13\left(-x+4\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 13ৰ গুণনীয়ক উলিয়াওক।
\left(-x+4\right)\left(x+13\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম -x+4ৰ গুণনীয়ক উলিয়াওক।
-x^{2}-9x+52=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\times 52}}{2\left(-1\right)}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\times 52}}{2\left(-1\right)}
বৰ্গ -9৷
x=\frac{-\left(-9\right)±\sqrt{81+4\times 52}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{81+208}}{2\left(-1\right)}
4 বাৰ 52 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{289}}{2\left(-1\right)}
208 লৈ 81 যোগ কৰক৷
x=\frac{-\left(-9\right)±17}{2\left(-1\right)}
289-ৰ বৰ্গমূল লওক৷
x=\frac{9±17}{2\left(-1\right)}
-9ৰ বিপৰীত হৈছে 9৷
x=\frac{9±17}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{26}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{9±17}{-2} সমাধান কৰক৷ 17 লৈ 9 যোগ কৰক৷
x=-13
-2-ৰ দ্বাৰা 26 হৰণ কৰক৷
x=-\frac{8}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{9±17}{-2} সমাধান কৰক৷ 9-ৰ পৰা 17 বিয়োগ কৰক৷
x=4
-2-ৰ দ্বাৰা -8 হৰণ কৰক৷
-x^{2}-9x+52=-\left(x-\left(-13\right)\right)\left(x-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -13 আৰু x_{2}ৰ বাবে 4 বিকল্প৷
-x^{2}-9x+52=-\left(x+13\right)\left(x-4\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}