x-ৰ বাবে সমাধান কৰক
x=-1
x=9
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}-8x-9=0
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=-8 ab=1\left(-9\right)=-9
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-9 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-9 3,-3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -9 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-9=-8 3-3=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-9 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -8।
\left(x^{2}-9x\right)+\left(x-9\right)
x^{2}-8x-9ক \left(x^{2}-9x\right)+\left(x-9\right) হিচাপে পুনৰ লিখক।
x\left(x-9\right)+x-9
x^{2}-9xত xৰ গুণনীয়ক উলিয়াওক।
\left(x-9\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-9ৰ গুণনীয়ক উলিয়াওক।
x=9 x=-1
সমীকৰণ উলিয়াবলৈ, x-9=0 আৰু x+1=0 সমাধান কৰক।
5x^{2}-40x-45=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\left(-45\right)}}{2\times 5}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 5, b-ৰ বাবে -40, c-ৰ বাবে -45 চাবষ্টিটিউট৷
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\left(-45\right)}}{2\times 5}
বৰ্গ -40৷
x=\frac{-\left(-40\right)±\sqrt{1600-20\left(-45\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-40\right)±\sqrt{1600+900}}{2\times 5}
-20 বাৰ -45 পুৰণ কৰক৷
x=\frac{-\left(-40\right)±\sqrt{2500}}{2\times 5}
900 লৈ 1600 যোগ কৰক৷
x=\frac{-\left(-40\right)±50}{2\times 5}
2500-ৰ বৰ্গমূল লওক৷
x=\frac{40±50}{2\times 5}
-40ৰ বিপৰীত হৈছে 40৷
x=\frac{40±50}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{90}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{40±50}{10} সমাধান কৰক৷ 50 লৈ 40 যোগ কৰক৷
x=9
10-ৰ দ্বাৰা 90 হৰণ কৰক৷
x=-\frac{10}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{40±50}{10} সমাধান কৰক৷ 40-ৰ পৰা 50 বিয়োগ কৰক৷
x=-1
10-ৰ দ্বাৰা -10 হৰণ কৰক৷
x=9 x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
5x^{2}-40x-45=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
5x^{2}-40x-45-\left(-45\right)=-\left(-45\right)
সমীকৰণৰ দুয়োটা দিশতে 45 যোগ কৰক৷
5x^{2}-40x=-\left(-45\right)
ইয়াৰ নিজৰ পৰা -45 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}-40x=45
0-ৰ পৰা -45 বিয়োগ কৰক৷
\frac{5x^{2}-40x}{5}=\frac{45}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{40}{5}\right)x=\frac{45}{5}
5-ৰ দ্বাৰা হৰণ কৰিলে 5-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-8x=\frac{45}{5}
5-ৰ দ্বাৰা -40 হৰণ কৰক৷
x^{2}-8x=9
5-ৰ দ্বাৰা 45 হৰণ কৰক৷
x^{2}-8x+\left(-4\right)^{2}=9+\left(-4\right)^{2}
-8 হৰণ কৰক, -4 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -4ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-8x+16=9+16
বৰ্গ -4৷
x^{2}-8x+16=25
16 লৈ 9 যোগ কৰক৷
\left(x-4\right)^{2}=25
উৎপাদক x^{2}-8x+16 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-4\right)^{2}}=\sqrt{25}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-4=5 x-4=-5
সৰলীকৰণ৷
x=9 x=-1
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}