মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-4 ab=5\left(-12\right)=-60
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 5x^{2}+ax+bx-12 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -60 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-10 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(5x^{2}-10x\right)+\left(6x-12\right)
5x^{2}-4x-12ক \left(5x^{2}-10x\right)+\left(6x-12\right) হিচাপে পুনৰ লিখক।
5x\left(x-2\right)+6\left(x-2\right)
প্ৰথম গোটত 5x আৰু দ্বিতীয় গোটত 6ৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(5x+6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
5x^{2}-4x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\left(-12\right)}}{2\times 5}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-4\right)±\sqrt{16-4\times 5\left(-12\right)}}{2\times 5}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16-20\left(-12\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 5}
-20 বাৰ -12 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 5}
240 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±16}{2\times 5}
256-ৰ বৰ্গমূল লওক৷
x=\frac{4±16}{2\times 5}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{4±16}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{20}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±16}{10} সমাধান কৰক৷ 16 লৈ 4 যোগ কৰক৷
x=2
10-ৰ দ্বাৰা 20 হৰণ কৰক৷
x=-\frac{12}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±16}{10} সমাধান কৰক৷ 4-ৰ পৰা 16 বিয়োগ কৰক৷
x=-\frac{6}{5}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-12}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
5x^{2}-4x-12=5\left(x-2\right)\left(x-\left(-\frac{6}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 2 আৰু x_{2}ৰ বাবে -\frac{6}{5} বিকল্প৷
5x^{2}-4x-12=5\left(x-2\right)\left(x+\frac{6}{5}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
5x^{2}-4x-12=5\left(x-2\right)\times \frac{5x+6}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{6}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
5x^{2}-4x-12=\left(x-2\right)\left(5x+6\right)
5 আৰু 5-ত সৰ্বাধিক পৰিচিত কাৰক 5 বাতিল কৰাটো বাদ দিয়ক৷