মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-3x-4=0
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=-3 ab=1\left(-4\right)=-4
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-4 2,-2
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-4=-3 2-2=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(x^{2}-4x\right)+\left(x-4\right)
x^{2}-3x-4ক \left(x^{2}-4x\right)+\left(x-4\right) হিচাপে পুনৰ লিখক।
x\left(x-4\right)+x-4
x^{2}-4xত xৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=-1
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x+1=0 সমাধান কৰক।
5x^{2}-15x-20=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 5\left(-20\right)}}{2\times 5}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 5, b-ৰ বাবে -15, c-ৰ বাবে -20 চাবষ্টিটিউট৷
x=\frac{-\left(-15\right)±\sqrt{225-4\times 5\left(-20\right)}}{2\times 5}
বৰ্গ -15৷
x=\frac{-\left(-15\right)±\sqrt{225-20\left(-20\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-15\right)±\sqrt{225+400}}{2\times 5}
-20 বাৰ -20 পুৰণ কৰক৷
x=\frac{-\left(-15\right)±\sqrt{625}}{2\times 5}
400 লৈ 225 যোগ কৰক৷
x=\frac{-\left(-15\right)±25}{2\times 5}
625-ৰ বৰ্গমূল লওক৷
x=\frac{15±25}{2\times 5}
-15ৰ বিপৰীত হৈছে 15৷
x=\frac{15±25}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{40}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{15±25}{10} সমাধান কৰক৷ 25 লৈ 15 যোগ কৰক৷
x=4
10-ৰ দ্বাৰা 40 হৰণ কৰক৷
x=-\frac{10}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{15±25}{10} সমাধান কৰক৷ 15-ৰ পৰা 25 বিয়োগ কৰক৷
x=-1
10-ৰ দ্বাৰা -10 হৰণ কৰক৷
x=4 x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
5x^{2}-15x-20=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
5x^{2}-15x-20-\left(-20\right)=-\left(-20\right)
সমীকৰণৰ দুয়োটা দিশতে 20 যোগ কৰক৷
5x^{2}-15x=-\left(-20\right)
ইয়াৰ নিজৰ পৰা -20 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}-15x=20
0-ৰ পৰা -20 বিয়োগ কৰক৷
\frac{5x^{2}-15x}{5}=\frac{20}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{15}{5}\right)x=\frac{20}{5}
5-ৰ দ্বাৰা হৰণ কৰিলে 5-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-3x=\frac{20}{5}
5-ৰ দ্বাৰা -15 হৰণ কৰক৷
x^{2}-3x=4
5-ৰ দ্বাৰা 20 হৰণ কৰক৷
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-3 হৰণ কৰক, -\frac{3}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{3}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{3}{2} বৰ্গ কৰক৷
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} লৈ 4 যোগ কৰক৷
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
উৎপাদক x^{2}-3x+\frac{9}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
সৰলীকৰণ৷
x=4 x=-1
সমীকৰণৰ দুয়োটা দিশতে \frac{3}{2} যোগ কৰক৷