x-ৰ বাবে সমাধান কৰক
x=-1
x=\frac{4}{5}=0.8
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5x^{2}+x+1-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
5x^{2}+x-4=0
-4 লাভ কৰিবলৈ 1-ৰ পৰা 5 বিয়োগ কৰক৷
a+b=1 ab=5\left(-4\right)=-20
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 5x^{2}+ax+bx-4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,20 -2,10 -4,5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -20 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+20=19 -2+10=8 -4+5=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(5x^{2}-4x\right)+\left(5x-4\right)
5x^{2}+x-4ক \left(5x^{2}-4x\right)+\left(5x-4\right) হিচাপে পুনৰ লিখক।
x\left(5x-4\right)+5x-4
5x^{2}-4xত xৰ গুণনীয়ক উলিয়াওক।
\left(5x-4\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 5x-4ৰ গুণনীয়ক উলিয়াওক।
x=\frac{4}{5} x=-1
সমীকৰণ উলিয়াবলৈ, 5x-4=0 আৰু x+1=0 সমাধান কৰক।
5x^{2}+x+1=5
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
5x^{2}+x+1-5=5-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
5x^{2}+x+1-5=0
ইয়াৰ নিজৰ পৰা 5 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}+x-4=0
1-ৰ পৰা 5 বিয়োগ কৰক৷
x=\frac{-1±\sqrt{1^{2}-4\times 5\left(-4\right)}}{2\times 5}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 5, b-ৰ বাবে 1, c-ৰ বাবে -4 চাবষ্টিটিউট৷
x=\frac{-1±\sqrt{1-4\times 5\left(-4\right)}}{2\times 5}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1-20\left(-4\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-1±\sqrt{1+80}}{2\times 5}
-20 বাৰ -4 পুৰণ কৰক৷
x=\frac{-1±\sqrt{81}}{2\times 5}
80 লৈ 1 যোগ কৰক৷
x=\frac{-1±9}{2\times 5}
81-ৰ বৰ্গমূল লওক৷
x=\frac{-1±9}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{8}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±9}{10} সমাধান কৰক৷ 9 লৈ -1 যোগ কৰক৷
x=\frac{4}{5}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{8}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{10}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±9}{10} সমাধান কৰক৷ -1-ৰ পৰা 9 বিয়োগ কৰক৷
x=-1
10-ৰ দ্বাৰা -10 হৰণ কৰক৷
x=\frac{4}{5} x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
5x^{2}+x+1=5
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
5x^{2}+x+1-1=5-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
5x^{2}+x=5-1
ইয়াৰ নিজৰ পৰা 1 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}+x=4
5-ৰ পৰা 1 বিয়োগ কৰক৷
\frac{5x^{2}+x}{5}=\frac{4}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{1}{5}x=\frac{4}{5}
5-ৰ দ্বাৰা হৰণ কৰিলে 5-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{4}{5}+\left(\frac{1}{10}\right)^{2}
\frac{1}{5} হৰণ কৰক, \frac{1}{10} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{10}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{4}{5}+\frac{1}{100}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{10} বৰ্গ কৰক৷
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{81}{100}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{100} লৈ \frac{4}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{1}{10}\right)^{2}=\frac{81}{100}
উৎপাদক x^{2}+\frac{1}{5}x+\frac{1}{100} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{10}=\frac{9}{10} x+\frac{1}{10}=-\frac{9}{10}
সৰলীকৰণ৷
x=\frac{4}{5} x=-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{10} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}