মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=8 ab=5\left(-4\right)=-20
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 5x^{2}+ax+bx-4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,20 -2,10 -4,5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -20 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+20=19 -2+10=8 -4+5=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=10
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 8।
\left(5x^{2}-2x\right)+\left(10x-4\right)
5x^{2}+8x-4ক \left(5x^{2}-2x\right)+\left(10x-4\right) হিচাপে পুনৰ লিখক।
x\left(5x-2\right)+2\left(5x-2\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(5x-2\right)\left(x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 5x-2ৰ গুণনীয়ক উলিয়াওক।
x=\frac{2}{5} x=-2
সমীকৰণ উলিয়াবলৈ, 5x-2=0 আৰু x+2=0 সমাধান কৰক।
5x^{2}+8x-4=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-8±\sqrt{8^{2}-4\times 5\left(-4\right)}}{2\times 5}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 5, b-ৰ বাবে 8, c-ৰ বাবে -4 চাবষ্টিটিউট৷
x=\frac{-8±\sqrt{64-4\times 5\left(-4\right)}}{2\times 5}
বৰ্গ 8৷
x=\frac{-8±\sqrt{64-20\left(-4\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-8±\sqrt{64+80}}{2\times 5}
-20 বাৰ -4 পুৰণ কৰক৷
x=\frac{-8±\sqrt{144}}{2\times 5}
80 লৈ 64 যোগ কৰক৷
x=\frac{-8±12}{2\times 5}
144-ৰ বৰ্গমূল লওক৷
x=\frac{-8±12}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{4}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-8±12}{10} সমাধান কৰক৷ 12 লৈ -8 যোগ কৰক৷
x=\frac{2}{5}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{4}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{20}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-8±12}{10} সমাধান কৰক৷ -8-ৰ পৰা 12 বিয়োগ কৰক৷
x=-2
10-ৰ দ্বাৰা -20 হৰণ কৰক৷
x=\frac{2}{5} x=-2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
5x^{2}+8x-4=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
5x^{2}+8x-4-\left(-4\right)=-\left(-4\right)
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
5x^{2}+8x=-\left(-4\right)
ইয়াৰ নিজৰ পৰা -4 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}+8x=4
0-ৰ পৰা -4 বিয়োগ কৰক৷
\frac{5x^{2}+8x}{5}=\frac{4}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{8}{5}x=\frac{4}{5}
5-ৰ দ্বাৰা হৰণ কৰিলে 5-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=\frac{4}{5}+\left(\frac{4}{5}\right)^{2}
\frac{8}{5} হৰণ কৰক, \frac{4}{5} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{4}{5}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{4}{5}+\frac{16}{25}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{4}{5} বৰ্গ কৰক৷
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{36}{25}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{16}{25} লৈ \frac{4}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{4}{5}\right)^{2}=\frac{36}{25}
উৎপাদক x^{2}+\frac{8}{5}x+\frac{16}{25} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{36}{25}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{4}{5}=\frac{6}{5} x+\frac{4}{5}=-\frac{6}{5}
সৰলীকৰণ৷
x=\frac{2}{5} x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{4}{5} বিয়োগ কৰক৷