মুখ্য সমললৈ এৰি যাওক
t-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

±\frac{2}{5},±2,±\frac{1}{5},±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 2ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 5ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
t=1
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
5t^{2}+5t-2=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, t-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। 5t^{2}+5t-2 লাভ কৰিবলৈ t-1ৰ দ্বাৰা 5t^{3}-7t+2 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
t=\frac{-5±\sqrt{5^{2}-4\times 5\left(-2\right)}}{2\times 5}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 5ৰ বিকল্প দিয়ক, bৰ বাবে 5, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে -2।
t=\frac{-5±\sqrt{65}}{10}
গণনা কৰক৷
t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া 5t^{2}+5t-2=0 সমীকৰণটো সমাধান কৰক।
t=1 t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।