মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=3 ab=5\left(-2\right)=-10
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 5x^{2}+ax+bx-2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,10 -2,5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -10 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+10=9 -2+5=3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 3।
\left(5x^{2}-2x\right)+\left(5x-2\right)
5x^{2}+3x-2ক \left(5x^{2}-2x\right)+\left(5x-2\right) হিচাপে পুনৰ লিখক।
x\left(5x-2\right)+5x-2
5x^{2}-2xত xৰ গুণনীয়ক উলিয়াওক।
\left(5x-2\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 5x-2ৰ গুণনীয়ক উলিয়াওক।
x=\frac{2}{5} x=-1
সমীকৰণ উলিয়াবলৈ, 5x-2=0 আৰু x+1=0 সমাধান কৰক।
5x^{2}+3x-2=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 5, b-ৰ বাবে 3, c-ৰ বাবে -2 চাবষ্টিটিউট৷
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
বৰ্গ 3৷
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-3±\sqrt{9+40}}{2\times 5}
-20 বাৰ -2 পুৰণ কৰক৷
x=\frac{-3±\sqrt{49}}{2\times 5}
40 লৈ 9 যোগ কৰক৷
x=\frac{-3±7}{2\times 5}
49-ৰ বৰ্গমূল লওক৷
x=\frac{-3±7}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{4}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-3±7}{10} সমাধান কৰক৷ 7 লৈ -3 যোগ কৰক৷
x=\frac{2}{5}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{4}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{10}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-3±7}{10} সমাধান কৰক৷ -3-ৰ পৰা 7 বিয়োগ কৰক৷
x=-1
10-ৰ দ্বাৰা -10 হৰণ কৰক৷
x=\frac{2}{5} x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
5x^{2}+3x-2=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
5x^{2}+3x-2-\left(-2\right)=-\left(-2\right)
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
5x^{2}+3x=-\left(-2\right)
ইয়াৰ নিজৰ পৰা -2 বিয়োগ কৰিলে 0 থাকে৷
5x^{2}+3x=2
0-ৰ পৰা -2 বিয়োগ কৰক৷
\frac{5x^{2}+3x}{5}=\frac{2}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{3}{5}x=\frac{2}{5}
5-ৰ দ্বাৰা হৰণ কৰিলে 5-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(\frac{3}{10}\right)^{2}
\frac{3}{5} হৰণ কৰক, \frac{3}{10} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{3}{10}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{3}{10} বৰ্গ কৰক৷
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{9}{100} লৈ \frac{2}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{3}{10}\right)^{2}=\frac{49}{100}
উৎপাদক x^{2}+\frac{3}{5}x+\frac{9}{100} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{3}{10}=\frac{7}{10} x+\frac{3}{10}=-\frac{7}{10}
সৰলীকৰণ৷
x=\frac{2}{5} x=-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{10} বিয়োগ কৰক৷