কাৰক
6\left(x+9\right)^{2}
মূল্যায়ন
6\left(x+9\right)^{2}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
6\left(81+18x+x^{2}\right)
6ৰ গুণনীয়ক উলিয়াওক।
\left(x+9\right)^{2}
81+18x+x^{2} বিবেচনা কৰক। উপযুক্ত বৰ্গ সূত্ৰ ব্যৱহাৰ কৰক, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, য’ত a=x আৰু b=9 থাকে৷
6\left(x+9\right)^{2}
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
factor(6x^{2}+108x+486)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
gcf(6,108,486)=6
গুণাংকৰ পৰা সৰ্বশ্ৰেষ্ঠ সাধাৰণ গুণনীয়কটো বিচাৰক।
6\left(x^{2}+18x+81\right)
6ৰ গুণনীয়ক উলিয়াওক।
\sqrt{81}=9
অনুগামী পদ 81ৰ বৰ্গমূল বিচাৰক৷
6\left(x+9\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
6x^{2}+108x+486=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-108±\sqrt{108^{2}-4\times 6\times 486}}{2\times 6}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-108±\sqrt{11664-4\times 6\times 486}}{2\times 6}
বৰ্গ 108৷
x=\frac{-108±\sqrt{11664-24\times 486}}{2\times 6}
-4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-108±\sqrt{11664-11664}}{2\times 6}
-24 বাৰ 486 পুৰণ কৰক৷
x=\frac{-108±\sqrt{0}}{2\times 6}
-11664 লৈ 11664 যোগ কৰক৷
x=\frac{-108±0}{2\times 6}
0-ৰ বৰ্গমূল লওক৷
x=\frac{-108±0}{12}
2 বাৰ 6 পুৰণ কৰক৷
6x^{2}+108x+486=6\left(x-\left(-9\right)\right)\left(x-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -9 আৰু x_{2}ৰ বাবে -9 বিকল্প৷
6x^{2}+108x+486=6\left(x+9\right)\left(x+9\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}