মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x^{2}-4x+45
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=-4 ab=-45=-45
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো -x^{2}+ax+bx+45 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-45 3,-15 5,-9
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -45 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-45=-44 3-15=-12 5-9=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=5 b=-9
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(-x^{2}+5x\right)+\left(-9x+45\right)
-x^{2}-4x+45ক \left(-x^{2}+5x\right)+\left(-9x+45\right) হিচাপে পুনৰ লিখক।
x\left(-x+5\right)+9\left(-x+5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 9ৰ গুণনীয়ক উলিয়াওক।
\left(-x+5\right)\left(x+9\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম -x+5ৰ গুণনীয়ক উলিয়াওক।
-x^{2}-4x+45=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 45}}{2\left(-1\right)}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 45}}{2\left(-1\right)}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16+4\times 45}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{16+180}}{2\left(-1\right)}
4 বাৰ 45 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{196}}{2\left(-1\right)}
180 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±14}{2\left(-1\right)}
196-ৰ বৰ্গমূল লওক৷
x=\frac{4±14}{2\left(-1\right)}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{4±14}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{18}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±14}{-2} সমাধান কৰক৷ 14 লৈ 4 যোগ কৰক৷
x=-9
-2-ৰ দ্বাৰা 18 হৰণ কৰক৷
x=-\frac{10}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±14}{-2} সমাধান কৰক৷ 4-ৰ পৰা 14 বিয়োগ কৰক৷
x=5
-2-ৰ দ্বাৰা -10 হৰণ কৰক৷
-x^{2}-4x+45=-\left(x-\left(-9\right)\right)\left(x-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -9 আৰু x_{2}ৰ বাবে 5 বিকল্প৷
-x^{2}-4x+45=-\left(x+9\right)\left(x-5\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷