মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x^{2}+7x-17-3x^{2}=12x-3
দুয়োটা দিশৰ পৰা 3x^{2} বিয়োগ কৰক৷
x^{2}+7x-17=12x-3
x^{2} লাভ কৰিবলৈ 4x^{2} আৰু -3x^{2} একত্ৰ কৰক৷
x^{2}+7x-17-12x=-3
দুয়োটা দিশৰ পৰা 12x বিয়োগ কৰক৷
x^{2}-5x-17=-3
-5x লাভ কৰিবলৈ 7x আৰু -12x একত্ৰ কৰক৷
x^{2}-5x-17+3=0
উভয় কাষে 3 যোগ কৰক।
x^{2}-5x-14=0
-14 লাভ কৰিবৰ বাবে -17 আৰু 3 যোগ কৰক৷
a+b=-5 ab=-14
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-5x-14ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-14 2,-7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -14 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-14=-13 2-7=-5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x-7\right)\left(x+2\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=7 x=-2
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+2=0 সমাধান কৰক।
4x^{2}+7x-17-3x^{2}=12x-3
দুয়োটা দিশৰ পৰা 3x^{2} বিয়োগ কৰক৷
x^{2}+7x-17=12x-3
x^{2} লাভ কৰিবলৈ 4x^{2} আৰু -3x^{2} একত্ৰ কৰক৷
x^{2}+7x-17-12x=-3
দুয়োটা দিশৰ পৰা 12x বিয়োগ কৰক৷
x^{2}-5x-17=-3
-5x লাভ কৰিবলৈ 7x আৰু -12x একত্ৰ কৰক৷
x^{2}-5x-17+3=0
উভয় কাষে 3 যোগ কৰক।
x^{2}-5x-14=0
-14 লাভ কৰিবৰ বাবে -17 আৰু 3 যোগ কৰক৷
a+b=-5 ab=1\left(-14\right)=-14
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-14 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-14 2,-7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -14 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-14=-13 2-7=-5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x^{2}-7x\right)+\left(2x-14\right)
x^{2}-5x-14ক \left(x^{2}-7x\right)+\left(2x-14\right) হিচাপে পুনৰ লিখক।
x\left(x-7\right)+2\left(x-7\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(x-7\right)\left(x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-7ৰ গুণনীয়ক উলিয়াওক।
x=7 x=-2
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+2=0 সমাধান কৰক।
4x^{2}+7x-17-3x^{2}=12x-3
দুয়োটা দিশৰ পৰা 3x^{2} বিয়োগ কৰক৷
x^{2}+7x-17=12x-3
x^{2} লাভ কৰিবলৈ 4x^{2} আৰু -3x^{2} একত্ৰ কৰক৷
x^{2}+7x-17-12x=-3
দুয়োটা দিশৰ পৰা 12x বিয়োগ কৰক৷
x^{2}-5x-17=-3
-5x লাভ কৰিবলৈ 7x আৰু -12x একত্ৰ কৰক৷
x^{2}-5x-17+3=0
উভয় কাষে 3 যোগ কৰক।
x^{2}-5x-14=0
-14 লাভ কৰিবৰ বাবে -17 আৰু 3 যোগ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
সমীকৰণটো এটা মান্য ৰূপত থাকে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰত a-ৰ বাবে 1, b-ৰ বাবে -5, c-ৰ বাবে -14 চাবষ্টিটিউট কৰক, \frac{-b±\sqrt{b^{2}-4ac}}{2a} আৰু ইয়াক ± প্লাচ হ’লে সমাধান কৰক৷
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
বৰ্গ -5৷
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
-4 বাৰ -14 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{81}}{2}
56 লৈ 25 যোগ কৰক৷
x=\frac{-\left(-5\right)±9}{2}
81-ৰ বৰ্গমূল লওক৷
x=\frac{5±9}{2}
-5ৰ বিপৰীত হৈছে 5৷
x=\frac{14}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{5±9}{2} সমাধান কৰক৷ 9 লৈ 5 যোগ কৰক৷
x=7
2-ৰ দ্বাৰা 14 হৰণ কৰক৷
x=-\frac{4}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{5±9}{2} সমাধান কৰক৷ 5-ৰ পৰা 9 বিয়োগ কৰক৷
x=-2
2-ৰ দ্বাৰা -4 হৰণ কৰক৷
x=7 x=-2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
4x^{2}+7x-17-3x^{2}=12x-3
দুয়োটা দিশৰ পৰা 3x^{2} বিয়োগ কৰক৷
x^{2}+7x-17=12x-3
x^{2} লাভ কৰিবলৈ 4x^{2} আৰু -3x^{2} একত্ৰ কৰক৷
x^{2}+7x-17-12x=-3
দুয়োটা দিশৰ পৰা 12x বিয়োগ কৰক৷
x^{2}-5x-17=-3
-5x লাভ কৰিবলৈ 7x আৰু -12x একত্ৰ কৰক৷
x^{2}-5x=-3+17
উভয় কাষে 17 যোগ কৰক।
x^{2}-5x=14
14 লাভ কৰিবৰ বাবে -3 আৰু 17 যোগ কৰক৷
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
-5 হৰণ কৰক, -\frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-5x+\frac{25}{4}=14+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{2} বৰ্গ কৰক৷
x^{2}-5x+\frac{25}{4}=\frac{81}{4}
\frac{25}{4} লৈ 14 যোগ কৰক৷
\left(x-\frac{5}{2}\right)^{2}=\frac{81}{4}
ফেক্টৰ x^{2}-5x+\frac{25}{4}৷ সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা সুনিৰ্দিষ্ট বৰ্গ হয়, ই সদায়ে \left(x+\frac{b}{2}\right)^{2} ৰূপে ফেক্টৰ হয়৷
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{2}=\frac{9}{2} x-\frac{5}{2}=-\frac{9}{2}
সৰলীকৰণ৷
x=7 x=-2
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2} যোগ কৰক৷