x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
x=-\frac{1}{2}+\sqrt{2}i\approx -0.5+1.414213562i
x=-\sqrt{2}i-\frac{1}{2}\approx -0.5-1.414213562i
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
4x^{2}+4x+9=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 9}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে 4, c-ৰ বাবে 9 চাবষ্টিটিউট৷
x=\frac{-4±\sqrt{16-4\times 4\times 9}}{2\times 4}
বৰ্গ 4৷
x=\frac{-4±\sqrt{16-16\times 9}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-4±\sqrt{16-144}}{2\times 4}
-16 বাৰ 9 পুৰণ কৰক৷
x=\frac{-4±\sqrt{-128}}{2\times 4}
-144 লৈ 16 যোগ কৰক৷
x=\frac{-4±8\sqrt{2}i}{2\times 4}
-128-ৰ বৰ্গমূল লওক৷
x=\frac{-4±8\sqrt{2}i}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{-4+2\times 2^{\frac{5}{2}}i}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-4±8\sqrt{2}i}{8} সমাধান কৰক৷ 8i\sqrt{2} লৈ -4 যোগ কৰক৷
x=-\frac{1}{2}+\sqrt{2}i
8-ৰ দ্বাৰা -4+2i\times 2^{\frac{5}{2}} হৰণ কৰক৷
x=\frac{-2\times 2^{\frac{5}{2}}i-4}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-4±8\sqrt{2}i}{8} সমাধান কৰক৷ -4-ৰ পৰা 8i\sqrt{2} বিয়োগ কৰক৷
x=-\sqrt{2}i-\frac{1}{2}
8-ৰ দ্বাৰা -4-2i\times 2^{\frac{5}{2}} হৰণ কৰক৷
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
4x^{2}+4x+9=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
4x^{2}+4x+9-9=-9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
4x^{2}+4x=-9
ইয়াৰ নিজৰ পৰা 9 বিয়োগ কৰিলে 0 থাকে৷
\frac{4x^{2}+4x}{4}=-\frac{9}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{4}{4}x=-\frac{9}{4}
4-ৰ দ্বাৰা হৰণ কৰিলে 4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+x=-\frac{9}{4}
4-ৰ দ্বাৰা 4 হৰণ কৰক৷
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{1}{2}\right)^{2}
1 হৰণ কৰক, \frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+x+\frac{1}{4}=\frac{-9+1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{2} বৰ্গ কৰক৷
x^{2}+x+\frac{1}{4}=-2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{4} লৈ -\frac{9}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{1}{2}\right)^{2}=-2
উৎপাদক x^{2}+x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-2}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{2}=\sqrt{2}i x+\frac{1}{2}=-\sqrt{2}i
সৰলীকৰণ৷
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}