মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}+7x-4=0
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=7 ab=2\left(-4\right)=-8
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-1 b=8
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(2x^{2}-x\right)+\left(8x-4\right)
2x^{2}+7x-4ক \left(2x^{2}-x\right)+\left(8x-4\right) হিচাপে পুনৰ লিখক।
x\left(2x-1\right)+4\left(2x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 4ৰ গুণনীয়ক উলিয়াওক।
\left(2x-1\right)\left(x+4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2x-1ৰ গুণনীয়ক উলিয়াওক।
x=\frac{1}{2} x=-4
সমীকৰণ উলিয়াবলৈ, 2x-1=0 আৰু x+4=0 সমাধান কৰক।
4x^{2}+14x-8=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-14±\sqrt{14^{2}-4\times 4\left(-8\right)}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে 14, c-ৰ বাবে -8 চাবষ্টিটিউট৷
x=\frac{-14±\sqrt{196-4\times 4\left(-8\right)}}{2\times 4}
বৰ্গ 14৷
x=\frac{-14±\sqrt{196-16\left(-8\right)}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-14±\sqrt{196+128}}{2\times 4}
-16 বাৰ -8 পুৰণ কৰক৷
x=\frac{-14±\sqrt{324}}{2\times 4}
128 লৈ 196 যোগ কৰক৷
x=\frac{-14±18}{2\times 4}
324-ৰ বৰ্গমূল লওক৷
x=\frac{-14±18}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{4}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-14±18}{8} সমাধান কৰক৷ 18 লৈ -14 যোগ কৰক৷
x=\frac{1}{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{4}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{32}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-14±18}{8} সমাধান কৰক৷ -14-ৰ পৰা 18 বিয়োগ কৰক৷
x=-4
8-ৰ দ্বাৰা -32 হৰণ কৰক৷
x=\frac{1}{2} x=-4
সমীকৰণটো এতিয়া সমাধান হৈছে৷
4x^{2}+14x-8=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
4x^{2}+14x-8-\left(-8\right)=-\left(-8\right)
সমীকৰণৰ দুয়োটা দিশতে 8 যোগ কৰক৷
4x^{2}+14x=-\left(-8\right)
ইয়াৰ নিজৰ পৰা -8 বিয়োগ কৰিলে 0 থাকে৷
4x^{2}+14x=8
0-ৰ পৰা -8 বিয়োগ কৰক৷
\frac{4x^{2}+14x}{4}=\frac{8}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{14}{4}x=\frac{8}{4}
4-ৰ দ্বাৰা হৰণ কৰিলে 4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{7}{2}x=\frac{8}{4}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{14}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}+\frac{7}{2}x=2
4-ৰ দ্বাৰা 8 হৰণ কৰক৷
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=2+\left(\frac{7}{4}\right)^{2}
\frac{7}{2} হৰণ কৰক, \frac{7}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{7}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{7}{4} বৰ্গ কৰক৷
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
\frac{49}{16} লৈ 2 যোগ কৰক৷
\left(x+\frac{7}{4}\right)^{2}=\frac{81}{16}
উৎপাদক x^{2}+\frac{7}{2}x+\frac{49}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{7}{4}=\frac{9}{4} x+\frac{7}{4}=-\frac{9}{4}
সৰলীকৰণ৷
x=\frac{1}{2} x=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{7}{4} বিয়োগ কৰক৷