x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
x=\frac{-3+\sqrt{10}i}{2}\approx -1.5+1.58113883i
x=\frac{-\sqrt{10}i-3}{2}\approx -1.5-1.58113883i
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
4x^{2}+12x+19=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 19}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে 12, c-ৰ বাবে 19 চাবষ্টিটিউট৷
x=\frac{-12±\sqrt{144-4\times 4\times 19}}{2\times 4}
বৰ্গ 12৷
x=\frac{-12±\sqrt{144-16\times 19}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-12±\sqrt{144-304}}{2\times 4}
-16 বাৰ 19 পুৰণ কৰক৷
x=\frac{-12±\sqrt{-160}}{2\times 4}
-304 লৈ 144 যোগ কৰক৷
x=\frac{-12±4\sqrt{10}i}{2\times 4}
-160-ৰ বৰ্গমূল লওক৷
x=\frac{-12±4\sqrt{10}i}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{-12+4\sqrt{10}i}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-12±4\sqrt{10}i}{8} সমাধান কৰক৷ 4i\sqrt{10} লৈ -12 যোগ কৰক৷
x=\frac{-3+\sqrt{10}i}{2}
8-ৰ দ্বাৰা -12+4i\sqrt{10} হৰণ কৰক৷
x=\frac{-4\sqrt{10}i-12}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-12±4\sqrt{10}i}{8} সমাধান কৰক৷ -12-ৰ পৰা 4i\sqrt{10} বিয়োগ কৰক৷
x=\frac{-\sqrt{10}i-3}{2}
8-ৰ দ্বাৰা -12-4i\sqrt{10} হৰণ কৰক৷
x=\frac{-3+\sqrt{10}i}{2} x=\frac{-\sqrt{10}i-3}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
4x^{2}+12x+19=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
4x^{2}+12x+19-19=-19
সমীকৰণৰ দুয়োটা দিশৰ পৰা 19 বিয়োগ কৰক৷
4x^{2}+12x=-19
ইয়াৰ নিজৰ পৰা 19 বিয়োগ কৰিলে 0 থাকে৷
\frac{4x^{2}+12x}{4}=-\frac{19}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{12}{4}x=-\frac{19}{4}
4-ৰ দ্বাৰা হৰণ কৰিলে 4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+3x=-\frac{19}{4}
4-ৰ দ্বাৰা 12 হৰণ কৰক৷
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{19}{4}+\left(\frac{3}{2}\right)^{2}
3 হৰণ কৰক, \frac{3}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{3}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+3x+\frac{9}{4}=\frac{-19+9}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{3}{2} বৰ্গ কৰক৷
x^{2}+3x+\frac{9}{4}=-\frac{5}{2}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{9}{4} লৈ -\frac{19}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{3}{2}\right)^{2}=-\frac{5}{2}
উৎপাদক x^{2}+3x+\frac{9}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{5}{2}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{3}{2}=\frac{\sqrt{10}i}{2} x+\frac{3}{2}=-\frac{\sqrt{10}i}{2}
সৰলীকৰণ৷
x=\frac{-3+\sqrt{10}i}{2} x=\frac{-\sqrt{10}i-3}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{2} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}