মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-1 ab=4\left(-3\right)=-12
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 4x^{2}+ax+bx-3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-12 2,-6 3,-4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -12 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-12=-11 2-6=-4 3-4=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -1।
\left(4x^{2}-4x\right)+\left(3x-3\right)
4x^{2}-x-3ক \left(4x^{2}-4x\right)+\left(3x-3\right) হিচাপে পুনৰ লিখক।
4x\left(x-1\right)+3\left(x-1\right)
প্ৰথম গোটত 4x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(4x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
4x^{2}-x-3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
-16 বাৰ -3 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
48 লৈ 1 যোগ কৰক৷
x=\frac{-\left(-1\right)±7}{2\times 4}
49-ৰ বৰ্গমূল লওক৷
x=\frac{1±7}{2\times 4}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{1±7}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{8}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±7}{8} সমাধান কৰক৷ 7 লৈ 1 যোগ কৰক৷
x=1
8-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=-\frac{6}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±7}{8} সমাধান কৰক৷ 1-ৰ পৰা 7 বিয়োগ কৰক৷
x=-\frac{3}{4}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-6}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
4x^{2}-x-3=4\left(x-1\right)\left(x-\left(-\frac{3}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে -\frac{3}{4} বিকল্প৷
4x^{2}-x-3=4\left(x-1\right)\left(x+\frac{3}{4}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
4x^{2}-x-3=4\left(x-1\right)\times \frac{4x+3}{4}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{3}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
4x^{2}-x-3=\left(x-1\right)\left(4x+3\right)
4 আৰু 4-ত সৰ্বাধিক পৰিচিত কাৰক 4 বাতিল কৰাটো বাদ দিয়ক৷