x-ৰ বাবে সমাধান কৰক
x=2
x=-2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}-4=0
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
\left(x-2\right)\left(x+2\right)=0
x^{2}-4 বিবেচনা কৰক। x^{2}-4ক x^{2}-2^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
x=2 x=-2
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু x+2=0 সমাধান কৰক।
4x^{2}=16
উভয় কাষে 16 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
x^{2}=\frac{16}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}=4
4 লাভ কৰিবলৈ 4ৰ দ্বাৰা 16 হৰণ কৰক৷
x=2 x=-2
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
4x^{2}-16=0
কুৱাড্ৰেটিক সমীকৰণ হৈছে ইয়াৰ দৰে, এটা x^{2} পদৰ সৈতে, কিন্তু কোনো x নাই, ইয়াক কুৱাড্ৰেয়িক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, এবাৰ সেইবিলাকক মান্য ৰূপ : ax^{2}+bx+c=0-ত প্ৰদান কৰি৷
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-16\right)}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে 0, c-ৰ বাবে -16 চাবষ্টিটিউট৷
x=\frac{0±\sqrt{-4\times 4\left(-16\right)}}{2\times 4}
বৰ্গ 0৷
x=\frac{0±\sqrt{-16\left(-16\right)}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{0±\sqrt{256}}{2\times 4}
-16 বাৰ -16 পুৰণ কৰক৷
x=\frac{0±16}{2\times 4}
256-ৰ বৰ্গমূল লওক৷
x=\frac{0±16}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=2
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{0±16}{8} সমাধান কৰক৷ 8-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=-2
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{0±16}{8} সমাধান কৰক৷ 8-ৰ দ্বাৰা -16 হৰণ কৰক৷
x=2 x=-2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}