মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-5x+2=0
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=-5 ab=2\times 2=4
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx+2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-4 -2,-2
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-4=-5 -2-2=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=-1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(2x^{2}-4x\right)+\left(-x+2\right)
2x^{2}-5x+2ক \left(2x^{2}-4x\right)+\left(-x+2\right) হিচাপে পুনৰ লিখক।
2x\left(x-2\right)-\left(x-2\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(2x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
x=2 x=\frac{1}{2}
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু 2x-1=0 সমাধান কৰক।
4x^{2}-10x+4=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 4\times 4}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে -10, c-ৰ বাবে 4 চাবষ্টিটিউট৷
x=\frac{-\left(-10\right)±\sqrt{100-4\times 4\times 4}}{2\times 4}
বৰ্গ -10৷
x=\frac{-\left(-10\right)±\sqrt{100-16\times 4}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2\times 4}
-16 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-10\right)±\sqrt{36}}{2\times 4}
-64 লৈ 100 যোগ কৰক৷
x=\frac{-\left(-10\right)±6}{2\times 4}
36-ৰ বৰ্গমূল লওক৷
x=\frac{10±6}{2\times 4}
-10ৰ বিপৰীত হৈছে 10৷
x=\frac{10±6}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{16}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{10±6}{8} সমাধান কৰক৷ 6 লৈ 10 যোগ কৰক৷
x=2
8-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=\frac{4}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{10±6}{8} সমাধান কৰক৷ 10-ৰ পৰা 6 বিয়োগ কৰক৷
x=\frac{1}{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{4}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=2 x=\frac{1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
4x^{2}-10x+4=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
4x^{2}-10x+4-4=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
4x^{2}-10x=-4
ইয়াৰ নিজৰ পৰা 4 বিয়োগ কৰিলে 0 থাকে৷
\frac{4x^{2}-10x}{4}=-\frac{4}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{10}{4}\right)x=-\frac{4}{4}
4-ৰ দ্বাৰা হৰণ কৰিলে 4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{5}{2}x=-\frac{4}{4}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-10}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{5}{2}x=-1
4-ৰ দ্বাৰা -4 হৰণ কৰক৷
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} হৰণ কৰক, -\frac{5}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{5}{2}x+\frac{25}{16}=-1+\frac{25}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{4} বৰ্গ কৰক৷
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{9}{16}
\frac{25}{16} লৈ -1 যোগ কৰক৷
\left(x-\frac{5}{4}\right)^{2}=\frac{9}{16}
উৎপাদক x^{2}-\frac{5}{2}x+\frac{25}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{4}=\frac{3}{4} x-\frac{5}{4}=-\frac{3}{4}
সৰলীকৰণ৷
x=2 x=\frac{1}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{4} যোগ কৰক৷