মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x+3-x^{2}=4x+5
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
3x+3-x^{2}-4x=5
দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
-x+3-x^{2}=5
-x লাভ কৰিবলৈ 3x আৰু -4x একত্ৰ কৰক৷
-x+3-x^{2}-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
-x-2-x^{2}=0
-2 লাভ কৰিবলৈ 3-ৰ পৰা 5 বিয়োগ কৰক৷
-x^{2}-x-2=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে -1, c-ৰ বাবে -2 চাবষ্টিটিউট৷
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-2\right)}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1-8}}{2\left(-1\right)}
4 বাৰ -2 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{-7}}{2\left(-1\right)}
-8 লৈ 1 যোগ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{7}i}{2\left(-1\right)}
-7-ৰ বৰ্গমূল লওক৷
x=\frac{1±\sqrt{7}i}{2\left(-1\right)}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{1±\sqrt{7}i}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{1+\sqrt{7}i}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±\sqrt{7}i}{-2} সমাধান কৰক৷ i\sqrt{7} লৈ 1 যোগ কৰক৷
x=\frac{-\sqrt{7}i-1}{2}
-2-ৰ দ্বাৰা 1+i\sqrt{7} হৰণ কৰক৷
x=\frac{-\sqrt{7}i+1}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±\sqrt{7}i}{-2} সমাধান কৰক৷ 1-ৰ পৰা i\sqrt{7} বিয়োগ কৰক৷
x=\frac{-1+\sqrt{7}i}{2}
-2-ৰ দ্বাৰা 1-i\sqrt{7} হৰণ কৰক৷
x=\frac{-\sqrt{7}i-1}{2} x=\frac{-1+\sqrt{7}i}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
3x+3-x^{2}=4x+5
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
3x+3-x^{2}-4x=5
দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
-x+3-x^{2}=5
-x লাভ কৰিবলৈ 3x আৰু -4x একত্ৰ কৰক৷
-x-x^{2}=5-3
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
-x-x^{2}=2
2 লাভ কৰিবলৈ 5-ৰ পৰা 3 বিয়োগ কৰক৷
-x^{2}-x=2
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-x^{2}-x}{-1}=\frac{2}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{2}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+x=\frac{2}{-1}
-1-ৰ দ্বাৰা -1 হৰণ কৰক৷
x^{2}+x=-2
-1-ৰ দ্বাৰা 2 হৰণ কৰক৷
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
1 হৰণ কৰক, \frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{2} বৰ্গ কৰক৷
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
\frac{1}{4} লৈ -2 যোগ কৰক৷
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
উৎপাদক x^{2}+x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
সৰলীকৰণ৷
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷