মূল্যায়ন
x^{4}+120
ডিফাৰেনচিয়েট w.r.t. x
4x^{3}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{360}{3}+x^{2}xx
x^{2} লাভ কৰিবৰ বাবে x আৰু x পুৰণ কৰক৷
\frac{360}{3}+x^{3}x
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 3 পাবলৈ 2 আৰু 1 যোগ কৰক।
\frac{360}{3}+x^{4}
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 4 পাবলৈ 3 আৰু 1 যোগ কৰক।
120+x^{4}
120 লাভ কৰিবলৈ 3ৰ দ্বাৰা 360 হৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{360}{3}+x^{2}xx)
x^{2} লাভ কৰিবৰ বাবে x আৰু x পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{360}{3}+x^{3}x)
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 3 পাবলৈ 2 আৰু 1 যোগ কৰক।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{360}{3}+x^{4})
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 4 পাবলৈ 3 আৰু 1 যোগ কৰক।
\frac{\mathrm{d}}{\mathrm{d}x}(120+x^{4})
120 লাভ কৰিবলৈ 3ৰ দ্বাৰা 360 হৰণ কৰক৷
4x^{4-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
4x^{3}
4-ৰ পৰা 1 বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}