মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

30x^{2}+2x-0=0
0 লাভ কৰিবৰ বাবে 0 আৰু 8 পুৰণ কৰক৷
30x^{2}+2x=0
পদসমূহ ৰেকৰ্ড কৰক৷
x\left(30x+2\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=-\frac{1}{15}
সমীকৰণ উলিয়াবলৈ, x=0 আৰু 30x+2=0 সমাধান কৰক।
30x^{2}+2x-0=0
0 লাভ কৰিবৰ বাবে 0 আৰু 8 পুৰণ কৰক৷
30x^{2}+2x=0
পদসমূহ ৰেকৰ্ড কৰক৷
x=\frac{-2±\sqrt{2^{2}}}{2\times 30}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 30, b-ৰ বাবে 2, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-2±2}{2\times 30}
2^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{-2±2}{60}
2 বাৰ 30 পুৰণ কৰক৷
x=\frac{0}{60}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-2±2}{60} সমাধান কৰক৷ 2 লৈ -2 যোগ কৰক৷
x=0
60-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=-\frac{4}{60}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-2±2}{60} সমাধান কৰক৷ -2-ৰ পৰা 2 বিয়োগ কৰক৷
x=-\frac{1}{15}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-4}{60} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=0 x=-\frac{1}{15}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
30x^{2}+2x-0=0
0 লাভ কৰিবৰ বাবে 0 আৰু 8 পুৰণ কৰক৷
30x^{2}+2x=0+0
উভয় কাষে 0 যোগ কৰক।
30x^{2}+2x=0
0 লাভ কৰিবৰ বাবে 0 আৰু 0 যোগ কৰক৷
\frac{30x^{2}+2x}{30}=\frac{0}{30}
30-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{2}{30}x=\frac{0}{30}
30-ৰ দ্বাৰা হৰণ কৰিলে 30-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{1}{15}x=\frac{0}{30}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{2}{30} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}+\frac{1}{15}x=0
30-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}+\frac{1}{15}x+\left(\frac{1}{30}\right)^{2}=\left(\frac{1}{30}\right)^{2}
\frac{1}{15} হৰণ কৰক, \frac{1}{30} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{30}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{1}{900}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{30} বৰ্গ কৰক৷
\left(x+\frac{1}{30}\right)^{2}=\frac{1}{900}
উৎপাদক x^{2}+\frac{1}{15}x+\frac{1}{900} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{30}\right)^{2}}=\sqrt{\frac{1}{900}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{30}=\frac{1}{30} x+\frac{1}{30}=-\frac{1}{30}
সৰলীকৰণ৷
x=0 x=-\frac{1}{15}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{30} বিয়োগ কৰক৷