মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}+6x+9=0
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a+b=6 ab=1\times 9=9
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+9 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,9 3,3
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 9 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+9=10 3+3=6
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=3 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 6।
\left(x^{2}+3x\right)+\left(3x+9\right)
x^{2}+6x+9ক \left(x^{2}+3x\right)+\left(3x+9\right) হিচাপে পুনৰ লিখক।
x\left(x+3\right)+3\left(x+3\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x+3\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+3ৰ গুণনীয়ক উলিয়াওক।
\left(x+3\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=-3
সমীকৰণ উলিয়াবলৈ, x+3=0 সমাধান কৰক।
3x^{2}+18x+27=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-18±\sqrt{18^{2}-4\times 3\times 27}}{2\times 3}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 3, b-ৰ বাবে 18, c-ৰ বাবে 27 চাবষ্টিটিউট৷
x=\frac{-18±\sqrt{324-4\times 3\times 27}}{2\times 3}
বৰ্গ 18৷
x=\frac{-18±\sqrt{324-12\times 27}}{2\times 3}
-4 বাৰ 3 পুৰণ কৰক৷
x=\frac{-18±\sqrt{324-324}}{2\times 3}
-12 বাৰ 27 পুৰণ কৰক৷
x=\frac{-18±\sqrt{0}}{2\times 3}
-324 লৈ 324 যোগ কৰক৷
x=-\frac{18}{2\times 3}
0-ৰ বৰ্গমূল লওক৷
x=-\frac{18}{6}
2 বাৰ 3 পুৰণ কৰক৷
x=-3
6-ৰ দ্বাৰা -18 হৰণ কৰক৷
3x^{2}+18x+27=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
3x^{2}+18x+27-27=-27
সমীকৰণৰ দুয়োটা দিশৰ পৰা 27 বিয়োগ কৰক৷
3x^{2}+18x=-27
ইয়াৰ নিজৰ পৰা 27 বিয়োগ কৰিলে 0 থাকে৷
\frac{3x^{2}+18x}{3}=-\frac{27}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{18}{3}x=-\frac{27}{3}
3-ৰ দ্বাৰা হৰণ কৰিলে 3-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+6x=-\frac{27}{3}
3-ৰ দ্বাৰা 18 হৰণ কৰক৷
x^{2}+6x=-9
3-ৰ দ্বাৰা -27 হৰণ কৰক৷
x^{2}+6x+3^{2}=-9+3^{2}
6 হৰণ কৰক, 3 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 3ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+6x+9=-9+9
বৰ্গ 3৷
x^{2}+6x+9=0
9 লৈ -9 যোগ কৰক৷
\left(x+3\right)^{2}=0
উৎপাদক x^{2}+6x+9 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+3\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+3=0 x+3=0
সৰলীকৰণ৷
x=-3 x=-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
x=-3
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷