কাৰক
3mn\left(m-10\right)\left(m+6\right)
মূল্যায়ন
3mn\left(m-10\right)\left(m+6\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3\left(m^{3}n-4m^{2}n-60mn\right)
3ৰ গুণনীয়ক উলিয়াওক।
mn\left(m^{2}-4m-60\right)
m^{3}n-4m^{2}n-60mn বিবেচনা কৰক। mnৰ গুণনীয়ক উলিয়াওক।
a+b=-4 ab=1\left(-60\right)=-60
m^{2}-4m-60 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো m^{2}+am+bm-60 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -60 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-10 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(m^{2}-10m\right)+\left(6m-60\right)
m^{2}-4m-60ক \left(m^{2}-10m\right)+\left(6m-60\right) হিচাপে পুনৰ লিখক।
m\left(m-10\right)+6\left(m-10\right)
প্ৰথম গোটত m আৰু দ্বিতীয় গোটত 6ৰ গুণনীয়ক উলিয়াওক।
\left(m-10\right)\left(m+6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম m-10ৰ গুণনীয়ক উলিয়াওক।
3mn\left(m-10\right)\left(m+6\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}