মুখ্য সমললৈ এৰি যাওক
ডিফাৰেনচিয়েট w.r.t. a
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3a^{2}\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})+\frac{1}{a}\frac{\mathrm{d}}{\mathrm{d}a}(3a^{2})
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ গুণফলৰ ডিৰাইভেটিভ হৈছে প্ৰথম ফাংচনে দ্বিতীয়টোৰ ডিৰাইভেটিভক বৃদ্ধি কৰে লগতে দ্বিতীয় ফাংচনে প্ৰথমটোৰ ডিৰাইউভেটিভক বৃদ্ধি কৰে৷
3a^{2}\left(-1\right)a^{-1-1}+\frac{1}{a}\times 2\times 3a^{2-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
3a^{2}\left(-1\right)a^{-2}+\frac{1}{a}\times 6a^{1}
সৰলীকৰণ৷
-3a^{2-2}+6a^{-1+1}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
-3a^{0}+6a^{0}
সৰলীকৰণ৷
-3+6\times 1
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
-3+6
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{1}a^{2-1})
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{1})
গণনা কৰক৷
3a^{1-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
3a^{0}
গণনা কৰক৷
3\times 1
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
3
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।
3a
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে a সমান কৰক৷