মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\left(3x-6\right)\left(2x+1\right)>0
3ক x-2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
6x^{2}-9x-6>0
2x+1ৰ দ্বাৰা 3x-6 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
6x^{2}-9x-6=0
এইটো অসাম্য সমাধান কৰিবলৈ, বাওঁফালে উৎপাদক ভাঙক। ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 6ৰ বিকল্প দিয়ক, bৰ বাবে -9, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে -6।
x=\frac{9±15}{12}
গণনা কৰক৷
x=2 x=-\frac{1}{2}
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া x=\frac{9±15}{12} সমীকৰণটো সমাধান কৰক।
6\left(x-2\right)\left(x+\frac{1}{2}\right)>0
আহৰিত সমাধানসমূহ ব্যৱহাৰ কৰি অসাম্য পুনৰ লিখক।
x-2<0 x+\frac{1}{2}<0
গুণফল ধনাত্মক হ'বৰ বাবে, x-2 আৰু x+\frac{1}{2} উভয়ে ঋণাত্মক বা উভয়ে ধনাত্মক হ'ব লাগিব। যদি x-2 আৰু x+\frac{1}{2} উভয়ে ঋণাত্মক হয় তেতিয়া উদাহৰণটো বিবেচনা কৰক।
x<-\frac{1}{2}
উভয় অসাম্য সন্তুষ্ট কৰা সমাধানটো হৈছে x<-\frac{1}{2}।
x+\frac{1}{2}>0 x-2>0
যদি x-2 আৰু x+\frac{1}{2} উভয়ে ধনাত্মক হয় তেতিয়া উদাহৰণটো বিবেচনা কৰক।
x>2
উভয় অসাম্য সন্তুষ্ট কৰা সমাধানটো হৈছে x>2।
x<-\frac{1}{2}\text{; }x>2
চূড়ান্ত সমাধানটো হৈছে আহৰিত সমাধানসমূহৰ একত্ৰিকৰণ।