মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=16 ab=3\times 21=63
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 3x^{2}+ax+bx+21 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,63 3,21 7,9
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 63 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+63=64 3+21=24 7+9=16
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=7 b=9
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 16।
\left(3x^{2}+7x\right)+\left(9x+21\right)
3x^{2}+16x+21ক \left(3x^{2}+7x\right)+\left(9x+21\right) হিচাপে পুনৰ লিখক।
x\left(3x+7\right)+3\left(3x+7\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(3x+7\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 3x+7ৰ গুণনীয়ক উলিয়াওক।
3x^{2}+16x+21=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
বৰ্গ 16৷
x=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
-4 বাৰ 3 পুৰণ কৰক৷
x=\frac{-16±\sqrt{256-252}}{2\times 3}
-12 বাৰ 21 পুৰণ কৰক৷
x=\frac{-16±\sqrt{4}}{2\times 3}
-252 লৈ 256 যোগ কৰক৷
x=\frac{-16±2}{2\times 3}
4-ৰ বৰ্গমূল লওক৷
x=\frac{-16±2}{6}
2 বাৰ 3 পুৰণ কৰক৷
x=-\frac{14}{6}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-16±2}{6} সমাধান কৰক৷ 2 লৈ -16 যোগ কৰক৷
x=-\frac{7}{3}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-14}{6} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{18}{6}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-16±2}{6} সমাধান কৰক৷ -16-ৰ পৰা 2 বিয়োগ কৰক৷
x=-3
6-ৰ দ্বাৰা -18 হৰণ কৰক৷
3x^{2}+16x+21=3\left(x-\left(-\frac{7}{3}\right)\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -\frac{7}{3} আৰু x_{2}ৰ বাবে -3 বিকল্প৷
3x^{2}+16x+21=3\left(x+\frac{7}{3}\right)\left(x+3\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
3x^{2}+16x+21=3\times \frac{3x+7}{3}\left(x+3\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{7}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
3x^{2}+16x+21=\left(3x+7\right)\left(x+3\right)
3 আৰু 3-ত সৰ্বাধিক পৰিচিত কাৰক 3 বাতিল কৰাটো বাদ দিয়ক৷