মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-6x=x-3
2xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-6x-x=-3
দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
2x^{2}-7x=-3
-7x লাভ কৰিবলৈ -6x আৰু -x একত্ৰ কৰক৷
2x^{2}-7x+3=0
উভয় কাষে 3 যোগ কৰক।
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -7, c-ৰ বাবে 3 চাবষ্টিটিউট৷
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
বৰ্গ -7৷
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
-8 বাৰ 3 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
-24 লৈ 49 যোগ কৰক৷
x=\frac{-\left(-7\right)±5}{2\times 2}
25-ৰ বৰ্গমূল লওক৷
x=\frac{7±5}{2\times 2}
-7ৰ বিপৰীত হৈছে 7৷
x=\frac{7±5}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{12}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{7±5}{4} সমাধান কৰক৷ 5 লৈ 7 যোগ কৰক৷
x=3
4-ৰ দ্বাৰা 12 হৰণ কৰক৷
x=\frac{2}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{7±5}{4} সমাধান কৰক৷ 7-ৰ পৰা 5 বিয়োগ কৰক৷
x=\frac{1}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{2}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=3 x=\frac{1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-6x=x-3
2xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-6x-x=-3
দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
2x^{2}-7x=-3
-7x লাভ কৰিবলৈ -6x আৰু -x একত্ৰ কৰক৷
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{7}{2}x=-\frac{3}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} হৰণ কৰক, -\frac{7}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{4} বৰ্গ কৰক৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{49}{16} লৈ -\frac{3}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
উৎপাদক x^{2}-\frac{7}{2}x+\frac{49}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
সৰলীকৰণ৷
x=3 x=\frac{1}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{4} যোগ কৰক৷