মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-30 ab=25\times 9=225
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 25n^{2}+an+bn+9 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 225 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-15 b=-15
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -30।
\left(25n^{2}-15n\right)+\left(-15n+9\right)
25n^{2}-30n+9ক \left(25n^{2}-15n\right)+\left(-15n+9\right) হিচাপে পুনৰ লিখক।
5n\left(5n-3\right)-3\left(5n-3\right)
প্ৰথম গোটত 5n আৰু দ্বিতীয় গোটত -3ৰ গুণনীয়ক উলিয়াওক।
\left(5n-3\right)\left(5n-3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 5n-3ৰ গুণনীয়ক উলিয়াওক।
\left(5n-3\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(25n^{2}-30n+9)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
gcf(25,-30,9)=1
গুণাংকৰ পৰা সৰ্বশ্ৰেষ্ঠ সাধাৰণ গুণনীয়কটো বিচাৰক।
\sqrt{25n^{2}}=5n
অগ্ৰণী পদ 25n^{2}ৰ বৰ্গমূল বিচাৰক৷
\sqrt{9}=3
অনুগামী পদ 9ৰ বৰ্গমূল বিচাৰক৷
\left(5n-3\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
25n^{2}-30n+9=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
n=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\times 9}}{2\times 25}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
n=\frac{-\left(-30\right)±\sqrt{900-4\times 25\times 9}}{2\times 25}
বৰ্গ -30৷
n=\frac{-\left(-30\right)±\sqrt{900-100\times 9}}{2\times 25}
-4 বাৰ 25 পুৰণ কৰক৷
n=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 25}
-100 বাৰ 9 পুৰণ কৰক৷
n=\frac{-\left(-30\right)±\sqrt{0}}{2\times 25}
-900 লৈ 900 যোগ কৰক৷
n=\frac{-\left(-30\right)±0}{2\times 25}
0-ৰ বৰ্গমূল লওক৷
n=\frac{30±0}{2\times 25}
-30ৰ বিপৰীত হৈছে 30৷
n=\frac{30±0}{50}
2 বাৰ 25 পুৰণ কৰক৷
25n^{2}-30n+9=25\left(n-\frac{3}{5}\right)\left(n-\frac{3}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{3}{5} আৰু x_{2}ৰ বাবে \frac{3}{5} বিকল্প৷
25n^{2}-30n+9=25\times \frac{5n-3}{5}\left(n-\frac{3}{5}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি n-ৰ পৰা \frac{3}{5} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
25n^{2}-30n+9=25\times \frac{5n-3}{5}\times \frac{5n-3}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি n-ৰ পৰা \frac{3}{5} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{5\times 5}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{5n-3}{5} বাৰ \frac{5n-3}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{25}
5 বাৰ 5 পুৰণ কৰক৷
25n^{2}-30n+9=\left(5n-3\right)\left(5n-3\right)
25 আৰু 25-ত সৰ্বাধিক পৰিচিত কাৰক 25 বাতিল কৰাটো বাদ দিয়ক৷