x-ৰ বাবে সমাধান কৰক
x=1
x=2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
24x^{2}-72x+48=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 24\times 48}}{2\times 24}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 24, b-ৰ বাবে -72, c-ৰ বাবে 48 চাবষ্টিটিউট৷
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 24\times 48}}{2\times 24}
বৰ্গ -72৷
x=\frac{-\left(-72\right)±\sqrt{5184-96\times 48}}{2\times 24}
-4 বাৰ 24 পুৰণ কৰক৷
x=\frac{-\left(-72\right)±\sqrt{5184-4608}}{2\times 24}
-96 বাৰ 48 পুৰণ কৰক৷
x=\frac{-\left(-72\right)±\sqrt{576}}{2\times 24}
-4608 লৈ 5184 যোগ কৰক৷
x=\frac{-\left(-72\right)±24}{2\times 24}
576-ৰ বৰ্গমূল লওক৷
x=\frac{72±24}{2\times 24}
-72ৰ বিপৰীত হৈছে 72৷
x=\frac{72±24}{48}
2 বাৰ 24 পুৰণ কৰক৷
x=\frac{96}{48}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{72±24}{48} সমাধান কৰক৷ 24 লৈ 72 যোগ কৰক৷
x=2
48-ৰ দ্বাৰা 96 হৰণ কৰক৷
x=\frac{48}{48}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{72±24}{48} সমাধান কৰক৷ 72-ৰ পৰা 24 বিয়োগ কৰক৷
x=1
48-ৰ দ্বাৰা 48 হৰণ কৰক৷
x=2 x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
24x^{2}-72x+48=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
24x^{2}-72x+48-48=-48
সমীকৰণৰ দুয়োটা দিশৰ পৰা 48 বিয়োগ কৰক৷
24x^{2}-72x=-48
ইয়াৰ নিজৰ পৰা 48 বিয়োগ কৰিলে 0 থাকে৷
\frac{24x^{2}-72x}{24}=-\frac{48}{24}
24-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{72}{24}\right)x=-\frac{48}{24}
24-ৰ দ্বাৰা হৰণ কৰিলে 24-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-3x=-\frac{48}{24}
24-ৰ দ্বাৰা -72 হৰণ কৰক৷
x^{2}-3x=-2
24-ৰ দ্বাৰা -48 হৰণ কৰক৷
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
-3 হৰণ কৰক, -\frac{3}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{3}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{3}{2} বৰ্গ কৰক৷
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
\frac{9}{4} লৈ -2 যোগ কৰক৷
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
উৎপাদক x^{2}-3x+\frac{9}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
সৰলীকৰণ৷
x=2 x=1
সমীকৰণৰ দুয়োটা দিশতে \frac{3}{2} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}